{"title":"通过异构催化剂绿色合成具有生物活性的吡咯衍生物,自 2010 年起。","authors":"Berrichi Amina, Bachir Redouane","doi":"10.2174/0115680266307696240708115422","DOIUrl":null,"url":null,"abstract":"<p><p>Pyrrole derivatives are known as building blocks for the synthesis of biological compounds and pharmaceutical drugs. Several processes were employed to synthesize pyrroles, including Hantzsch, Paal-Knorr, and cycloaddition of dicarbonyl compounds reaction. Using catalysts like nanoparticles, metal salts, and heterogeneous ones was necessary to obtain the targeted pyrrole structure. Also, to afford more active pyrrole compounds, heterocyclic molecules such as imidazole or other rings were used in the synthesis as amines. This review presents heterogeneous catalysts since 2010 for the green synthesis of bioactive pyrroles in a one-pot multi-component reaction. Additionally, each synthetic method included a demonstration of the suggested mechanisms. Diakylacetylenedicarboxylate, dicarbonyl group, amines, furans, and acetylene group are consolidated to yield biological pyrroles through the heterogeneous catalysts. Finally, various parolee-performed activities were displayed, such as antibacterial, anti-inflammatory, analgesic, and other significant activities.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Synthesis of Bioactive Pyrrole Derivatives via Heterogeneous Catalysts Since 2010.\",\"authors\":\"Berrichi Amina, Bachir Redouane\",\"doi\":\"10.2174/0115680266307696240708115422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pyrrole derivatives are known as building blocks for the synthesis of biological compounds and pharmaceutical drugs. Several processes were employed to synthesize pyrroles, including Hantzsch, Paal-Knorr, and cycloaddition of dicarbonyl compounds reaction. Using catalysts like nanoparticles, metal salts, and heterogeneous ones was necessary to obtain the targeted pyrrole structure. Also, to afford more active pyrrole compounds, heterocyclic molecules such as imidazole or other rings were used in the synthesis as amines. This review presents heterogeneous catalysts since 2010 for the green synthesis of bioactive pyrroles in a one-pot multi-component reaction. Additionally, each synthetic method included a demonstration of the suggested mechanisms. Diakylacetylenedicarboxylate, dicarbonyl group, amines, furans, and acetylene group are consolidated to yield biological pyrroles through the heterogeneous catalysts. Finally, various parolee-performed activities were displayed, such as antibacterial, anti-inflammatory, analgesic, and other significant activities.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266307696240708115422\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266307696240708115422","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Green Synthesis of Bioactive Pyrrole Derivatives via Heterogeneous Catalysts Since 2010.
Pyrrole derivatives are known as building blocks for the synthesis of biological compounds and pharmaceutical drugs. Several processes were employed to synthesize pyrroles, including Hantzsch, Paal-Knorr, and cycloaddition of dicarbonyl compounds reaction. Using catalysts like nanoparticles, metal salts, and heterogeneous ones was necessary to obtain the targeted pyrrole structure. Also, to afford more active pyrrole compounds, heterocyclic molecules such as imidazole or other rings were used in the synthesis as amines. This review presents heterogeneous catalysts since 2010 for the green synthesis of bioactive pyrroles in a one-pot multi-component reaction. Additionally, each synthetic method included a demonstration of the suggested mechanisms. Diakylacetylenedicarboxylate, dicarbonyl group, amines, furans, and acetylene group are consolidated to yield biological pyrroles through the heterogeneous catalysts. Finally, various parolee-performed activities were displayed, such as antibacterial, anti-inflammatory, analgesic, and other significant activities.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.