Tianyi Ji, Xiaoxu Liu, Tengsheng Zhang, Yunli Shi, Dawei Sheng, Hangtian Yin, Ze Xiang Shen, Dongliang Chao
{"title":"钾离子电池晶体碳中的钾金属欠电位沉积","authors":"Tianyi Ji, Xiaoxu Liu, Tengsheng Zhang, Yunli Shi, Dawei Sheng, Hangtian Yin, Ze Xiang Shen, Dongliang Chao","doi":"10.1002/aenm.202401908","DOIUrl":null,"url":null,"abstract":"<p>Carbon materials, owing to their low cost, high conductivity, and good thermal and chemical stability, have been deemed as a promising anode candidate for potassium-ion batteries. However, anomalous low-voltage discharge situations in crystalline carbon materials imply uncertainty in the potassium storage mechanism. Herein, an overlooked scenario, i.e., potassium metal underpotential deposition (PMUPD), is disclosed in crystalline carbon materials for the first time. The study unveils the induction of interlayer pores on desolvation and PMUPD by insights from thermodynamics, kinetics, and experimental analyses. By manipulating the cutoff voltage to utilize partial PMUPD, a novel synergistic mechanism of co-intercalation and PMUPD is revealed. A remarkable initial coulombic efficiency of 92% and a 65% capacity retention at 30C (80 mAh g<sup>−1</sup>) are realized in crystalline carbon anode. This work provides a new insight into the potassium storage mechanism of carbon anode and contributes to further research and application of the UPD behavior in other alkaline metal ion batteries.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potassium Metal Underpotential Deposition in Crystalline Carbon of Potassium-Ion Batteries\",\"authors\":\"Tianyi Ji, Xiaoxu Liu, Tengsheng Zhang, Yunli Shi, Dawei Sheng, Hangtian Yin, Ze Xiang Shen, Dongliang Chao\",\"doi\":\"10.1002/aenm.202401908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbon materials, owing to their low cost, high conductivity, and good thermal and chemical stability, have been deemed as a promising anode candidate for potassium-ion batteries. However, anomalous low-voltage discharge situations in crystalline carbon materials imply uncertainty in the potassium storage mechanism. Herein, an overlooked scenario, i.e., potassium metal underpotential deposition (PMUPD), is disclosed in crystalline carbon materials for the first time. The study unveils the induction of interlayer pores on desolvation and PMUPD by insights from thermodynamics, kinetics, and experimental analyses. By manipulating the cutoff voltage to utilize partial PMUPD, a novel synergistic mechanism of co-intercalation and PMUPD is revealed. A remarkable initial coulombic efficiency of 92% and a 65% capacity retention at 30C (80 mAh g<sup>−1</sup>) are realized in crystalline carbon anode. This work provides a new insight into the potassium storage mechanism of carbon anode and contributes to further research and application of the UPD behavior in other alkaline metal ion batteries.</p>\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202401908\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202401908","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Potassium Metal Underpotential Deposition in Crystalline Carbon of Potassium-Ion Batteries
Carbon materials, owing to their low cost, high conductivity, and good thermal and chemical stability, have been deemed as a promising anode candidate for potassium-ion batteries. However, anomalous low-voltage discharge situations in crystalline carbon materials imply uncertainty in the potassium storage mechanism. Herein, an overlooked scenario, i.e., potassium metal underpotential deposition (PMUPD), is disclosed in crystalline carbon materials for the first time. The study unveils the induction of interlayer pores on desolvation and PMUPD by insights from thermodynamics, kinetics, and experimental analyses. By manipulating the cutoff voltage to utilize partial PMUPD, a novel synergistic mechanism of co-intercalation and PMUPD is revealed. A remarkable initial coulombic efficiency of 92% and a 65% capacity retention at 30C (80 mAh g−1) are realized in crystalline carbon anode. This work provides a new insight into the potassium storage mechanism of carbon anode and contributes to further research and application of the UPD behavior in other alkaline metal ion batteries.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.