用于高分辨率透射电子显微镜(HRTEM)机器学习的强大合成数据生成框架

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-07-29 DOI:10.1038/s41524-024-01336-0
Luis Rangel DaCosta, Katherine Sytwu, C. K. Groschner, M. C. Scott
{"title":"用于高分辨率透射电子显微镜(HRTEM)机器学习的强大合成数据生成框架","authors":"Luis Rangel DaCosta, Katherine Sytwu, C. K. Groschner, M. C. Scott","doi":"10.1038/s41524-024-01336-0","DOIUrl":null,"url":null,"abstract":"<p>Machine learning techniques are attractive options for developing highly-accurate analysis tools for nanomaterials characterization, including high-resolution transmission electron microscopy (HRTEM). However, successfully implementing such machine learning tools can be difficult due to the challenges in procuring sufficiently large, high-quality training datasets from experiments. In this work, we introduce Construction Zone, a Python package for rapid generation of complex nanoscale atomic structures which enables fast, systematic sampling of realistic nanomaterial structures and can be used as a random structure generator for large, diverse synthetic datasets. Using Construction Zone, we develop an end-to-end machine learning workflow for training neural network models to analyze experimental atomic resolution HRTEM images on the task of nanoparticle image segmentation purely with simulated databases. Further, we study the data curation process to understand how various aspects of the curated simulated data—including simulation fidelity, the distribution of atomic structures, and the distribution of imaging conditions—affect model performance across three benchmark experimental HRTEM image datasets. Using our workflow, we are able to achieve state-of-the-art segmentation performance on these experimental benchmarks and, further, we discuss robust strategies for consistently achieving high performance with machine learning in experimental settings using purely synthetic data. Construction Zone and its documentation are available at https://github.com/lerandc/construction_zone.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"117 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust synthetic data generation framework for machine learning in high-resolution transmission electron microscopy (HRTEM)\",\"authors\":\"Luis Rangel DaCosta, Katherine Sytwu, C. K. Groschner, M. C. Scott\",\"doi\":\"10.1038/s41524-024-01336-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Machine learning techniques are attractive options for developing highly-accurate analysis tools for nanomaterials characterization, including high-resolution transmission electron microscopy (HRTEM). However, successfully implementing such machine learning tools can be difficult due to the challenges in procuring sufficiently large, high-quality training datasets from experiments. In this work, we introduce Construction Zone, a Python package for rapid generation of complex nanoscale atomic structures which enables fast, systematic sampling of realistic nanomaterial structures and can be used as a random structure generator for large, diverse synthetic datasets. Using Construction Zone, we develop an end-to-end machine learning workflow for training neural network models to analyze experimental atomic resolution HRTEM images on the task of nanoparticle image segmentation purely with simulated databases. Further, we study the data curation process to understand how various aspects of the curated simulated data—including simulation fidelity, the distribution of atomic structures, and the distribution of imaging conditions—affect model performance across three benchmark experimental HRTEM image datasets. Using our workflow, we are able to achieve state-of-the-art segmentation performance on these experimental benchmarks and, further, we discuss robust strategies for consistently achieving high performance with machine learning in experimental settings using purely synthetic data. Construction Zone and its documentation are available at https://github.com/lerandc/construction_zone.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01336-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01336-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

机器学习技术是开发用于纳米材料表征(包括高分辨率透射电子显微镜 (HRTEM))的高精度分析工具的极具吸引力的选择。然而,由于难以从实验中获得足够大的高质量训练数据集,成功实施此类机器学习工具可能很困难。在这项工作中,我们介绍了用于快速生成复杂纳米级原子结构的 Python 软件包--Construction Zone,它可以快速、系统地对现实的纳米材料结构进行采样,并可用作大型、多样化合成数据集的随机结构生成器。利用 Construction Zone,我们开发了一个端到端的机器学习工作流程,用于训练神经网络模型,以分析纯粹模拟数据库的纳米粒子图像分割任务的原子分辨率 HRTEM 实验图像。此外,我们还研究了数据整理过程,以了解整理的模拟数据的各个方面(包括模拟保真度、原子结构分布和成像条件分布)如何影响三个基准实验 HRTEM 图像数据集的模型性能。利用我们的工作流程,我们能够在这些实验基准上实现最先进的分割性能,此外,我们还讨论了在使用纯合成数据的实验环境中利用机器学习持续实现高性能的稳健策略。建设区及其文档可在 https://github.com/lerandc/construction_zone 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust synthetic data generation framework for machine learning in high-resolution transmission electron microscopy (HRTEM)

Machine learning techniques are attractive options for developing highly-accurate analysis tools for nanomaterials characterization, including high-resolution transmission electron microscopy (HRTEM). However, successfully implementing such machine learning tools can be difficult due to the challenges in procuring sufficiently large, high-quality training datasets from experiments. In this work, we introduce Construction Zone, a Python package for rapid generation of complex nanoscale atomic structures which enables fast, systematic sampling of realistic nanomaterial structures and can be used as a random structure generator for large, diverse synthetic datasets. Using Construction Zone, we develop an end-to-end machine learning workflow for training neural network models to analyze experimental atomic resolution HRTEM images on the task of nanoparticle image segmentation purely with simulated databases. Further, we study the data curation process to understand how various aspects of the curated simulated data—including simulation fidelity, the distribution of atomic structures, and the distribution of imaging conditions—affect model performance across three benchmark experimental HRTEM image datasets. Using our workflow, we are able to achieve state-of-the-art segmentation performance on these experimental benchmarks and, further, we discuss robust strategies for consistently achieving high performance with machine learning in experimental settings using purely synthetic data. Construction Zone and its documentation are available at https://github.com/lerandc/construction_zone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Exhaustive search for novel multicomponent alloys with brute force and machine learning A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells Dielectric tensor prediction for inorganic materials using latent information from preferred potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1