2005 年以来地球能量失衡和海洋吸热的趋势与变化

IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Surveys in Geophysics Pub Date : 2024-07-29 DOI:10.1007/s10712-024-09849-5
Maria Z. Hakuba, Sébastien Fourest, Tim Boyer, Benoit Meyssignac, James A. Carton, Gaël Forget, Lijing Cheng, Donata Giglio, Gregory C. Johnson, Seiji Kato, Rachel E. Killick, Nicolas Kolodziejczyk, Mikael Kuusela, Felix Landerer, William Llovel, Ricardo Locarnini, Norman Loeb, John M. Lyman, Alexey Mishonov, Peter Pilewskie, James Reagan, Andrea Storto, Thea Sukianto, Karina von Schuckmann
{"title":"2005 年以来地球能量失衡和海洋吸热的趋势与变化","authors":"Maria Z. Hakuba,&nbsp;Sébastien Fourest,&nbsp;Tim Boyer,&nbsp;Benoit Meyssignac,&nbsp;James A. Carton,&nbsp;Gaël Forget,&nbsp;Lijing Cheng,&nbsp;Donata Giglio,&nbsp;Gregory C. Johnson,&nbsp;Seiji Kato,&nbsp;Rachel E. Killick,&nbsp;Nicolas Kolodziejczyk,&nbsp;Mikael Kuusela,&nbsp;Felix Landerer,&nbsp;William Llovel,&nbsp;Ricardo Locarnini,&nbsp;Norman Loeb,&nbsp;John M. Lyman,&nbsp;Alexey Mishonov,&nbsp;Peter Pilewskie,&nbsp;James Reagan,&nbsp;Andrea Storto,&nbsp;Thea Sukianto,&nbsp;Karina von Schuckmann","doi":"10.1007/s10712-024-09849-5","DOIUrl":null,"url":null,"abstract":"<div><p>Earth’s energy imbalance (EEI) is a fundamental metric of global Earth system change, quantifying the cumulative impact of natural and anthropogenic radiative forcings and feedback. To date, the most precise measurements of EEI change are obtained through radiometric observations at the top of the atmosphere (TOA), while the quantification of EEI absolute magnitude is facilitated through heat inventory analysis, where ~ 90% of heat uptake manifests as an increase in ocean heat content (OHC). Various international groups provide OHC datasets derived from in situ and satellite observations, as well as from reanalyses ingesting many available observations. The WCRP formed the GEWEX-EEI Assessment Working Group to better understand discrepancies, uncertainties and reconcile current knowledge of EEI magnitude, variability and trends. Here, 21 OHC datasets and ocean heat uptake (OHU) rates are intercompared, providing OHU estimates ranging between 0.40 ± 0.12 and 0.96 ± 0.08 W m<sup>−2</sup> (2005–2019), a spread that is slightly reduced when unequal ocean sampling is accounted for, and that is largely attributable to differing source data, mapping methods and quality control procedures. The rate of increase in OHU varies substantially between − 0.03 ± 0.13 (reanalysis product) and 1.1 ± 0.6 W m<sup>−2</sup> dec<sup>−1</sup> (satellite product). Products that either more regularly observe (satellites) or fill in situ data-sparse regions based on additional physical knowledge (some reanalysis and hybrid products) tend to track radiometric EEI variability better than purely in situ-based OHC products. This paper also examines zonal trends in TOA radiative fluxes and the impact of data gaps on trend estimates. The GEWEX-EEI community aims to refine their assessment studies, to forge a path toward best practices, e.g., in uncertainty quantification, and to formulate recommendations for future activities.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 6","pages":"1721 - 1756"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-024-09849-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Trends and Variability in Earth’s Energy Imbalance and Ocean Heat Uptake Since 2005\",\"authors\":\"Maria Z. Hakuba,&nbsp;Sébastien Fourest,&nbsp;Tim Boyer,&nbsp;Benoit Meyssignac,&nbsp;James A. Carton,&nbsp;Gaël Forget,&nbsp;Lijing Cheng,&nbsp;Donata Giglio,&nbsp;Gregory C. Johnson,&nbsp;Seiji Kato,&nbsp;Rachel E. Killick,&nbsp;Nicolas Kolodziejczyk,&nbsp;Mikael Kuusela,&nbsp;Felix Landerer,&nbsp;William Llovel,&nbsp;Ricardo Locarnini,&nbsp;Norman Loeb,&nbsp;John M. Lyman,&nbsp;Alexey Mishonov,&nbsp;Peter Pilewskie,&nbsp;James Reagan,&nbsp;Andrea Storto,&nbsp;Thea Sukianto,&nbsp;Karina von Schuckmann\",\"doi\":\"10.1007/s10712-024-09849-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Earth’s energy imbalance (EEI) is a fundamental metric of global Earth system change, quantifying the cumulative impact of natural and anthropogenic radiative forcings and feedback. To date, the most precise measurements of EEI change are obtained through radiometric observations at the top of the atmosphere (TOA), while the quantification of EEI absolute magnitude is facilitated through heat inventory analysis, where ~ 90% of heat uptake manifests as an increase in ocean heat content (OHC). Various international groups provide OHC datasets derived from in situ and satellite observations, as well as from reanalyses ingesting many available observations. The WCRP formed the GEWEX-EEI Assessment Working Group to better understand discrepancies, uncertainties and reconcile current knowledge of EEI magnitude, variability and trends. Here, 21 OHC datasets and ocean heat uptake (OHU) rates are intercompared, providing OHU estimates ranging between 0.40 ± 0.12 and 0.96 ± 0.08 W m<sup>−2</sup> (2005–2019), a spread that is slightly reduced when unequal ocean sampling is accounted for, and that is largely attributable to differing source data, mapping methods and quality control procedures. The rate of increase in OHU varies substantially between − 0.03 ± 0.13 (reanalysis product) and 1.1 ± 0.6 W m<sup>−2</sup> dec<sup>−1</sup> (satellite product). Products that either more regularly observe (satellites) or fill in situ data-sparse regions based on additional physical knowledge (some reanalysis and hybrid products) tend to track radiometric EEI variability better than purely in situ-based OHC products. This paper also examines zonal trends in TOA radiative fluxes and the impact of data gaps on trend estimates. The GEWEX-EEI community aims to refine their assessment studies, to forge a path toward best practices, e.g., in uncertainty quantification, and to formulate recommendations for future activities.</p></div>\",\"PeriodicalId\":49458,\"journal\":{\"name\":\"Surveys in Geophysics\",\"volume\":\"45 6\",\"pages\":\"1721 - 1756\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10712-024-09849-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surveys in Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10712-024-09849-5\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10712-024-09849-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

地球能量失衡(EEI)是衡量全球地球系统变化的一个基本指标,它量化了自然和人为辐射作用力和反馈的累积影响。迄今为止,EEI 变化的最精确测量是通过大气顶部(TOA)的辐射观测获得的,而 EEI 绝对值的量化则是通过热量清单分析来实现的,其中约 90% 的热量吸收表现为海洋热含量(OHC)的增加。各种国际团体提供的海洋热含量数据集来自现场观测和卫星观测,以及吸收了许多现有观测数据的再分析。世界气候研究计划成立了 GEWEX-EEI 评估工作组,以更好地了解差异和不确定性,并协调目前对 EEI 幅 度、变异性和趋势的了解。在这里,对 21 个海洋温度数据集和海洋热吸收率(OHU)进行了相互比较,得出的 OHU 估计值介于 0.40 ± 0.12 和 0.96 ± 0.08 W m-2 之间(2005-2019 年)。OHU的增加率在- 0.03 ± 0.13(再分析产品)和1.1 ± 0.6 W m-2 dec-1(卫星产品)之间有很大差异。更定期观测(卫星)或基于额外物理知识填补原地数据稀缺区域的产品(一些再分析和混合产品)往往比纯粹基于原地的 OHC 产品更好地跟踪辐射测量的 EEI 变率。本文还研究了 TOA 辐射通量的分区趋势以及数据缺口对趋势估计的影响。GEWEX-EEI 社区的目标是完善其评估研究,开辟一条通往最佳实践(如不确定性量化)的道路,并为未来的活动提出建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trends and Variability in Earth’s Energy Imbalance and Ocean Heat Uptake Since 2005

Earth’s energy imbalance (EEI) is a fundamental metric of global Earth system change, quantifying the cumulative impact of natural and anthropogenic radiative forcings and feedback. To date, the most precise measurements of EEI change are obtained through radiometric observations at the top of the atmosphere (TOA), while the quantification of EEI absolute magnitude is facilitated through heat inventory analysis, where ~ 90% of heat uptake manifests as an increase in ocean heat content (OHC). Various international groups provide OHC datasets derived from in situ and satellite observations, as well as from reanalyses ingesting many available observations. The WCRP formed the GEWEX-EEI Assessment Working Group to better understand discrepancies, uncertainties and reconcile current knowledge of EEI magnitude, variability and trends. Here, 21 OHC datasets and ocean heat uptake (OHU) rates are intercompared, providing OHU estimates ranging between 0.40 ± 0.12 and 0.96 ± 0.08 W m−2 (2005–2019), a spread that is slightly reduced when unequal ocean sampling is accounted for, and that is largely attributable to differing source data, mapping methods and quality control procedures. The rate of increase in OHU varies substantially between − 0.03 ± 0.13 (reanalysis product) and 1.1 ± 0.6 W m−2 dec−1 (satellite product). Products that either more regularly observe (satellites) or fill in situ data-sparse regions based on additional physical knowledge (some reanalysis and hybrid products) tend to track radiometric EEI variability better than purely in situ-based OHC products. This paper also examines zonal trends in TOA radiative fluxes and the impact of data gaps on trend estimates. The GEWEX-EEI community aims to refine their assessment studies, to forge a path toward best practices, e.g., in uncertainty quantification, and to formulate recommendations for future activities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surveys in Geophysics
Surveys in Geophysics 地学-地球化学与地球物理
CiteScore
10.00
自引率
10.90%
发文量
64
审稿时长
4.5 months
期刊介绍: Surveys in Geophysics publishes refereed review articles on the physical, chemical and biological processes occurring within the Earth, on its surface, in its atmosphere and in the near-Earth space environment, including relations with other bodies in the solar system. Observations, their interpretation, theory and modelling are covered in papers dealing with any of the Earth and space sciences.
期刊最新文献
Meta Learning for Improved Neural Network Wavefield Solutions An Overview of Theoretical Studies of Non-Seismic Phenomena Accompanying Earthquakes Identification and Verification of Geodynamic Risk Zones in the Western Carpathians Using Remote Sensing, Geophysical and GNSS Data Efficient Solutions for Forward Modeling of the Earth's Topographic Potential in Spheroidal Harmonics Special Issue on Earth’s Changing Water and Energy Cycle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1