YiYu Wang, M. S. S. Vinod Mouli, Min Ma, Fleur M. Ferguson
{"title":"让瞬态复合体持久","authors":"YiYu Wang, M. S. S. Vinod Mouli, Min Ma, Fleur M. Ferguson","doi":"10.1038/s41589-024-01649-7","DOIUrl":null,"url":null,"abstract":"Two recent studies identify derivatives of (+)-JQ1, a non-degrading inhibitor of BET bromodomains, as molecular glues that recruit DCAF16 and DCAF11 via mechanisms involving stabilization of transient target–ligase interactions.","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":12.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Making transient complexes stick\",\"authors\":\"YiYu Wang, M. S. S. Vinod Mouli, Min Ma, Fleur M. Ferguson\",\"doi\":\"10.1038/s41589-024-01649-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two recent studies identify derivatives of (+)-JQ1, a non-degrading inhibitor of BET bromodomains, as molecular glues that recruit DCAF16 and DCAF11 via mechanisms involving stabilization of transient target–ligase interactions.\",\"PeriodicalId\":18832,\"journal\":{\"name\":\"Nature chemical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41589-024-01649-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01649-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
最近的两项研究发现,(+)-JQ1(一种 BET 溴链的非降解抑制剂)的衍生物是一种分子胶,可通过瞬时靶标-连接酶相互作用的稳定机制招募 DCAF16 和 DCAF11。
Two recent studies identify derivatives of (+)-JQ1, a non-degrading inhibitor of BET bromodomains, as molecular glues that recruit DCAF16 and DCAF11 via mechanisms involving stabilization of transient target–ligase interactions.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.