{"title":"不同胁迫下葡萄(Vitis vinifera)WOX 家族基因的进化分析及其表达谱。","authors":"Meishuang Gong, Xu Lu, Congcong Zhang, Lei Ma, Haokai Yan, Guojie Nai, Ying Lai, Yuanyuan Li, Zhihui Pu, Baihong Chen, Shaoying Ma, Sheng Li","doi":"10.1071/FP24136","DOIUrl":null,"url":null,"abstract":"<p><p>The WUSCHEL-related homeobox (WOX) transcription factor family plays critical roles in plant growth, development, and stress adaptation, but the biological functions in response to various stress of the WOX gene family have not been extensively researched in grapevine (Vitis vinifera ). In this study, 12 grapevine WOXs were identified from the grapevine genome. Quantitative PCR and microarray expression profiling found that the expression of WOXs had an obvious tissue-specific pattern. Conjoint analysis between various tissues and treated materials indicated VvWUS1 expression is associated with expression of genes from grapevine rupestris stem pitting-associated virus; and VvWOX3 with grapevine fanleaf virus. The gene expression patterns of the WOXs in grape were different under salt stress, with VvWOX8/9 , VvWUS1 , and VvWOX3 responding more strongly to salt stress than control by 18.20-, 9.50-, and 9.19-fold. This study further improves understanding of the evolution and function of the WOX gene family, and offers a theoretical framework and reference for breeding grapevine to better tolerate adversity and permit cultivation of seedlings free of viruses.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary analysis of genes from WOX family and their expression profile in grape (<i>Vitis vinifera</i>) under different stresses.\",\"authors\":\"Meishuang Gong, Xu Lu, Congcong Zhang, Lei Ma, Haokai Yan, Guojie Nai, Ying Lai, Yuanyuan Li, Zhihui Pu, Baihong Chen, Shaoying Ma, Sheng Li\",\"doi\":\"10.1071/FP24136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The WUSCHEL-related homeobox (WOX) transcription factor family plays critical roles in plant growth, development, and stress adaptation, but the biological functions in response to various stress of the WOX gene family have not been extensively researched in grapevine (Vitis vinifera ). In this study, 12 grapevine WOXs were identified from the grapevine genome. Quantitative PCR and microarray expression profiling found that the expression of WOXs had an obvious tissue-specific pattern. Conjoint analysis between various tissues and treated materials indicated VvWUS1 expression is associated with expression of genes from grapevine rupestris stem pitting-associated virus; and VvWOX3 with grapevine fanleaf virus. The gene expression patterns of the WOXs in grape were different under salt stress, with VvWOX8/9 , VvWUS1 , and VvWOX3 responding more strongly to salt stress than control by 18.20-, 9.50-, and 9.19-fold. This study further improves understanding of the evolution and function of the WOX gene family, and offers a theoretical framework and reference for breeding grapevine to better tolerate adversity and permit cultivation of seedlings free of viruses.</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"51 \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP24136\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24136","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Evolutionary analysis of genes from WOX family and their expression profile in grape (Vitis vinifera) under different stresses.
The WUSCHEL-related homeobox (WOX) transcription factor family plays critical roles in plant growth, development, and stress adaptation, but the biological functions in response to various stress of the WOX gene family have not been extensively researched in grapevine (Vitis vinifera ). In this study, 12 grapevine WOXs were identified from the grapevine genome. Quantitative PCR and microarray expression profiling found that the expression of WOXs had an obvious tissue-specific pattern. Conjoint analysis between various tissues and treated materials indicated VvWUS1 expression is associated with expression of genes from grapevine rupestris stem pitting-associated virus; and VvWOX3 with grapevine fanleaf virus. The gene expression patterns of the WOXs in grape were different under salt stress, with VvWOX8/9 , VvWUS1 , and VvWOX3 responding more strongly to salt stress than control by 18.20-, 9.50-, and 9.19-fold. This study further improves understanding of the evolution and function of the WOX gene family, and offers a theoretical framework and reference for breeding grapevine to better tolerate adversity and permit cultivation of seedlings free of viruses.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.