阿尔法和贝塔振荡对上下文相关的视觉大小感知的不同贡献

IF 5.9 2区 医学 Q1 NEUROSCIENCES Neuroscience bulletin Pub Date : 2024-07-29 DOI:10.1007/s12264-024-01257-4
Lihong Chen, Yi Jiang
{"title":"阿尔法和贝塔振荡对上下文相关的视觉大小感知的不同贡献","authors":"Lihong Chen, Yi Jiang","doi":"10.1007/s12264-024-01257-4","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have proposed two cognitive mechanisms responsible for the Ebbinghaus illusion effect, i.e., contour interaction and size contrast. However, the neural underpinnings of these two mechanisms are largely unexplored. The present study introduced binocular depth to the Ebbinghaus illusion configuration and made the central target appear either in front of or behind the surrounding inducers in order to disturb size contrast instead of contour interaction. The results showed that the illusion effect, though persisted, was significantly reduced under the binocular depth conditions. Notably, the target with a larger perceived size reduced early alpha-band power (8-13 Hz, 0-100 ms after stimulus onset) at centroparietal sites irrespective of the relative depth of the target and the inducers, with the parietal alpha power negatively correlated with the illusion effect. Moreover, the target with a larger perceived size increased the occipito-parietal beta-band power (14-25 Hz, 200-300 ms after stimulus onset) under the no-depth condition, and the beta power was positively correlated with the illusion effect when the depth conditions were subtracted from the no-depth condition. The findings provided neurophysiological evidence in favor of the two cognitive mechanisms of the Ebbinghaus illusion by revealing that early alpha power is associated with low-level contour interaction and late beta power is linked to high-level size contrast, supporting the claim that neural oscillations at distinct frequency bands dynamically support different aspects of visual processing.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct Contributions of Alpha and Beta Oscillations to Context-Dependent Visual Size Perception.\",\"authors\":\"Lihong Chen, Yi Jiang\",\"doi\":\"10.1007/s12264-024-01257-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous studies have proposed two cognitive mechanisms responsible for the Ebbinghaus illusion effect, i.e., contour interaction and size contrast. However, the neural underpinnings of these two mechanisms are largely unexplored. The present study introduced binocular depth to the Ebbinghaus illusion configuration and made the central target appear either in front of or behind the surrounding inducers in order to disturb size contrast instead of contour interaction. The results showed that the illusion effect, though persisted, was significantly reduced under the binocular depth conditions. Notably, the target with a larger perceived size reduced early alpha-band power (8-13 Hz, 0-100 ms after stimulus onset) at centroparietal sites irrespective of the relative depth of the target and the inducers, with the parietal alpha power negatively correlated with the illusion effect. Moreover, the target with a larger perceived size increased the occipito-parietal beta-band power (14-25 Hz, 200-300 ms after stimulus onset) under the no-depth condition, and the beta power was positively correlated with the illusion effect when the depth conditions were subtracted from the no-depth condition. The findings provided neurophysiological evidence in favor of the two cognitive mechanisms of the Ebbinghaus illusion by revealing that early alpha power is associated with low-level contour interaction and late beta power is linked to high-level size contrast, supporting the claim that neural oscillations at distinct frequency bands dynamically support different aspects of visual processing.</p>\",\"PeriodicalId\":19314,\"journal\":{\"name\":\"Neuroscience bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12264-024-01257-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-024-01257-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

以往的研究提出了造成艾宾浩斯错觉效应的两种认知机制,即轮廓相互作用和大小对比。然而,这两种机制的神经基础在很大程度上尚未被探索。本研究在艾宾浩斯幻觉配置中引入了双眼深度,并使中心目标出现在周围诱导物的前面或后面,以干扰大小对比而非轮廓相互作用。结果表明,在双目深度条件下,错觉效应虽然持续存在,但却明显减弱。值得注意的是,无论目标和诱导物的相对深度如何,感知尺寸较大的目标都会降低顶叶中心位置的早期α波段功率(8-13赫兹,刺激开始后0-100毫秒),顶叶α功率与错觉效应呈负相关。此外,在无深度条件下,感知尺寸较大的目标会增加枕顶β波段功率(14-25赫兹,刺激开始后200-300毫秒),当深度条件减去无深度条件时,β功率与错觉效应呈正相关。研究结果为艾宾浩斯幻觉的两种认知机制提供了神经生理学证据,揭示了早期α功率与低级轮廓交互作用相关,而晚期β功率与高级大小对比相关,支持了不同频段的神经振荡动态支持视觉加工不同方面的说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distinct Contributions of Alpha and Beta Oscillations to Context-Dependent Visual Size Perception.

Previous studies have proposed two cognitive mechanisms responsible for the Ebbinghaus illusion effect, i.e., contour interaction and size contrast. However, the neural underpinnings of these two mechanisms are largely unexplored. The present study introduced binocular depth to the Ebbinghaus illusion configuration and made the central target appear either in front of or behind the surrounding inducers in order to disturb size contrast instead of contour interaction. The results showed that the illusion effect, though persisted, was significantly reduced under the binocular depth conditions. Notably, the target with a larger perceived size reduced early alpha-band power (8-13 Hz, 0-100 ms after stimulus onset) at centroparietal sites irrespective of the relative depth of the target and the inducers, with the parietal alpha power negatively correlated with the illusion effect. Moreover, the target with a larger perceived size increased the occipito-parietal beta-band power (14-25 Hz, 200-300 ms after stimulus onset) under the no-depth condition, and the beta power was positively correlated with the illusion effect when the depth conditions were subtracted from the no-depth condition. The findings provided neurophysiological evidence in favor of the two cognitive mechanisms of the Ebbinghaus illusion by revealing that early alpha power is associated with low-level contour interaction and late beta power is linked to high-level size contrast, supporting the claim that neural oscillations at distinct frequency bands dynamically support different aspects of visual processing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience bulletin
Neuroscience bulletin NEUROSCIENCES-
CiteScore
7.20
自引率
16.10%
发文量
163
审稿时长
6-12 weeks
期刊介绍: Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer. NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.
期刊最新文献
A Method for Detecting Depression in Adolescence Based on an Affective Brain-Computer Interface and Resting-State Electroencephalogram Signals. IsoVISoR: Towards 3D Mesoscale Brain Mapping of Large Mammals at Isotropic Sub-micron Resolution. Special Issue Celebrating the 25th Anniversary of the Institute of Neuroscience, CAS. Glutamatergic Circuits in the Pedunculopontine Nucleus Modulate Multiple Motor Functions. Sonic Hedgehog Mediates High Frequency-Dependent Deep Brain Stimulation for the Correction of Motor Deficits in a Parkinson's Disease Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1