IF 2.2 4区 生物学Q4 BIOCHEMISTRY & MOLECULAR BIOLOGYYeastPub Date : 2024-09-01Epub Date: 2024-07-30DOI:10.1002/yea.3975
Marina E Druseikis, Shay Covo
{"title":"有毒氨基酸、RTG 目标基因和伴侣蛋白在酿酒酵母中的合成致死率。","authors":"Marina E Druseikis, Shay Covo","doi":"10.1002/yea.3975","DOIUrl":null,"url":null,"abstract":"<p><p>The toxicity of non-proteinogenic amino acids has been known for decades. Numerous reports describe their antimicrobial/anticancer potential. However, these molecules are often toxic to the host as well; thus, a synthetic lethality approach that reduces the dose of these toxins while maintaining toxicity can be beneficial. Here we investigate synthetic lethality between toxic amino acids, the retrograde pathway, and molecular chaperones. In Saccharomyces cerevisiae, mitochondrial retrograde (RTG) pathway activation induces transcription of RTG-target genes to replenish alpha-ketoglutarate and its downstream product glutamate; both metabolites are required for arginine and lysine biosynthesis. We previously reported that tolerance of canavanine, a toxic arginine derivative, requires an intact RTG pathway, and low-dose canavanine exposure reduces the expression of RTG-target genes. Here we show that only a few of the examined chaperone mutants are sensitive to sublethal doses of canavanine. To predict synthetic lethality potential between RTG-target genes and chaperones, we measured the expression of RTG-target genes in canavanine-sensitive and canavanine-tolerant chaperone mutants. Most RTG-target genes were induced in all chaperone mutants starved for arginine; the same trend was not observed under lysine starvation. Canavanine exposure under arginine starvation attenuated and even reversed RTG-target-gene expression in the tested chaperone mutants. Importantly, under nearly all tested genetic and pharmacological conditions, the expression of IDH1 and/or IDH2 was induced. In agreement, idh1 and idh2 mutants are sensitive to canavanine and thialysine and show synthetic growth inhibition with chaperone mutants. Overall, we show that inhibiting molecular chaperones, RTG-target genes, or both can sensitize cells to low doses of toxic amino acids.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic lethality between toxic amino acids, RTG-target genes and chaperones in Saccharomyces cerevisiae.\",\"authors\":\"Marina E Druseikis, Shay Covo\",\"doi\":\"10.1002/yea.3975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The toxicity of non-proteinogenic amino acids has been known for decades. Numerous reports describe their antimicrobial/anticancer potential. However, these molecules are often toxic to the host as well; thus, a synthetic lethality approach that reduces the dose of these toxins while maintaining toxicity can be beneficial. Here we investigate synthetic lethality between toxic amino acids, the retrograde pathway, and molecular chaperones. In Saccharomyces cerevisiae, mitochondrial retrograde (RTG) pathway activation induces transcription of RTG-target genes to replenish alpha-ketoglutarate and its downstream product glutamate; both metabolites are required for arginine and lysine biosynthesis. We previously reported that tolerance of canavanine, a toxic arginine derivative, requires an intact RTG pathway, and low-dose canavanine exposure reduces the expression of RTG-target genes. Here we show that only a few of the examined chaperone mutants are sensitive to sublethal doses of canavanine. To predict synthetic lethality potential between RTG-target genes and chaperones, we measured the expression of RTG-target genes in canavanine-sensitive and canavanine-tolerant chaperone mutants. Most RTG-target genes were induced in all chaperone mutants starved for arginine; the same trend was not observed under lysine starvation. Canavanine exposure under arginine starvation attenuated and even reversed RTG-target-gene expression in the tested chaperone mutants. Importantly, under nearly all tested genetic and pharmacological conditions, the expression of IDH1 and/or IDH2 was induced. In agreement, idh1 and idh2 mutants are sensitive to canavanine and thialysine and show synthetic growth inhibition with chaperone mutants. Overall, we show that inhibiting molecular chaperones, RTG-target genes, or both can sensitize cells to low doses of toxic amino acids.</p>\",\"PeriodicalId\":23870,\"journal\":{\"name\":\"Yeast\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yeast\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/yea.3975\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.3975","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synthetic lethality between toxic amino acids, RTG-target genes and chaperones in Saccharomyces cerevisiae.
The toxicity of non-proteinogenic amino acids has been known for decades. Numerous reports describe their antimicrobial/anticancer potential. However, these molecules are often toxic to the host as well; thus, a synthetic lethality approach that reduces the dose of these toxins while maintaining toxicity can be beneficial. Here we investigate synthetic lethality between toxic amino acids, the retrograde pathway, and molecular chaperones. In Saccharomyces cerevisiae, mitochondrial retrograde (RTG) pathway activation induces transcription of RTG-target genes to replenish alpha-ketoglutarate and its downstream product glutamate; both metabolites are required for arginine and lysine biosynthesis. We previously reported that tolerance of canavanine, a toxic arginine derivative, requires an intact RTG pathway, and low-dose canavanine exposure reduces the expression of RTG-target genes. Here we show that only a few of the examined chaperone mutants are sensitive to sublethal doses of canavanine. To predict synthetic lethality potential between RTG-target genes and chaperones, we measured the expression of RTG-target genes in canavanine-sensitive and canavanine-tolerant chaperone mutants. Most RTG-target genes were induced in all chaperone mutants starved for arginine; the same trend was not observed under lysine starvation. Canavanine exposure under arginine starvation attenuated and even reversed RTG-target-gene expression in the tested chaperone mutants. Importantly, under nearly all tested genetic and pharmacological conditions, the expression of IDH1 and/or IDH2 was induced. In agreement, idh1 and idh2 mutants are sensitive to canavanine and thialysine and show synthetic growth inhibition with chaperone mutants. Overall, we show that inhibiting molecular chaperones, RTG-target genes, or both can sensitize cells to low doses of toxic amino acids.
期刊介绍:
Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology.
Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources