Fengying Liu, Huanhuan He, Weijie Yang, Daohui Wang, Xin Sui, Yangyang Sun, Shuai Wang, Yi Yang, Zhenyu Xiao, Jun Yang, Yongan Wang, Yuan Luo
{"title":"新型能量优化剂美多纳铵通过靶向磷酸甘油酸激酶 1 快速恢复急性低压氧诱导的脑损伤。","authors":"Fengying Liu, Huanhuan He, Weijie Yang, Daohui Wang, Xin Sui, Yangyang Sun, Shuai Wang, Yi Yang, Zhenyu Xiao, Jun Yang, Yongan Wang, Yuan Luo","doi":"10.1186/s12964-024-01757-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute hypobaric hypoxia-induced brain injury has been a challenge in the health management of mountaineers; therefore, new neuroprotective agents are urgently required. Meldonium, a well-known cardioprotective drug, has been reported to have neuroprotective effects. However, the relevant mechanisms have not been elucidated. We hypothesized that meldonium may play a potentially novel role in hypobaric hypoxia cerebral injury.</p><p><strong>Methods: </strong>We initially evaluated the neuroprotection efficacy of meldonium against acute hypoxia in mice and primary hippocampal neurons. The potential molecular targets of meldonium were screened using drug-target binding Huprot™ microarray chip and mass spectrometry analyses after which they were validated with surface plasmon resonance (SPR), molecular docking, and pull-down assay. The functional effects of such binding were explored through gene knockdown and overexpression.</p><p><strong>Results: </strong>The study clearly shows that pretreatment with meldonium rapidly attenuates neuronal pathological damage, cerebral blood flow changes, and mitochondrial damage and its cascade response to oxidative stress injury, thereby improving survival rates in mice brain and primary hippocampal neurons, revealing the remarkable pharmacological efficacy of meldonium in acute high-altitude brain injury. On the one hand, we confirmed that meldonium directly interacts with phosphoglycerate kinase 1 (PGK1) to promote its activity, which improved glycolysis and pyruvate metabolism to promote ATP production. On the other hand, meldonium also ameliorates mitochondrial damage by PGK1 translocating to mitochondria under acute hypoxia to regulate the activity of TNF receptor-associated protein 1 (TRAP1) molecular chaperones.</p><p><strong>Conclusion: </strong>These results further explain the mechanism of meldonium as an energy optimizer and provide a strategy for preventing acute hypobaric hypoxia brain injury at high altitudes.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285322/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel energy optimizer, meldonium, rapidly restores acute hypobaric hypoxia-induced brain injury by targeting phosphoglycerate kinase 1.\",\"authors\":\"Fengying Liu, Huanhuan He, Weijie Yang, Daohui Wang, Xin Sui, Yangyang Sun, Shuai Wang, Yi Yang, Zhenyu Xiao, Jun Yang, Yongan Wang, Yuan Luo\",\"doi\":\"10.1186/s12964-024-01757-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Acute hypobaric hypoxia-induced brain injury has been a challenge in the health management of mountaineers; therefore, new neuroprotective agents are urgently required. Meldonium, a well-known cardioprotective drug, has been reported to have neuroprotective effects. However, the relevant mechanisms have not been elucidated. We hypothesized that meldonium may play a potentially novel role in hypobaric hypoxia cerebral injury.</p><p><strong>Methods: </strong>We initially evaluated the neuroprotection efficacy of meldonium against acute hypoxia in mice and primary hippocampal neurons. The potential molecular targets of meldonium were screened using drug-target binding Huprot™ microarray chip and mass spectrometry analyses after which they were validated with surface plasmon resonance (SPR), molecular docking, and pull-down assay. The functional effects of such binding were explored through gene knockdown and overexpression.</p><p><strong>Results: </strong>The study clearly shows that pretreatment with meldonium rapidly attenuates neuronal pathological damage, cerebral blood flow changes, and mitochondrial damage and its cascade response to oxidative stress injury, thereby improving survival rates in mice brain and primary hippocampal neurons, revealing the remarkable pharmacological efficacy of meldonium in acute high-altitude brain injury. On the one hand, we confirmed that meldonium directly interacts with phosphoglycerate kinase 1 (PGK1) to promote its activity, which improved glycolysis and pyruvate metabolism to promote ATP production. On the other hand, meldonium also ameliorates mitochondrial damage by PGK1 translocating to mitochondria under acute hypoxia to regulate the activity of TNF receptor-associated protein 1 (TRAP1) molecular chaperones.</p><p><strong>Conclusion: </strong>These results further explain the mechanism of meldonium as an energy optimizer and provide a strategy for preventing acute hypobaric hypoxia brain injury at high altitudes.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285322/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-024-01757-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01757-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Novel energy optimizer, meldonium, rapidly restores acute hypobaric hypoxia-induced brain injury by targeting phosphoglycerate kinase 1.
Background: Acute hypobaric hypoxia-induced brain injury has been a challenge in the health management of mountaineers; therefore, new neuroprotective agents are urgently required. Meldonium, a well-known cardioprotective drug, has been reported to have neuroprotective effects. However, the relevant mechanisms have not been elucidated. We hypothesized that meldonium may play a potentially novel role in hypobaric hypoxia cerebral injury.
Methods: We initially evaluated the neuroprotection efficacy of meldonium against acute hypoxia in mice and primary hippocampal neurons. The potential molecular targets of meldonium were screened using drug-target binding Huprot™ microarray chip and mass spectrometry analyses after which they were validated with surface plasmon resonance (SPR), molecular docking, and pull-down assay. The functional effects of such binding were explored through gene knockdown and overexpression.
Results: The study clearly shows that pretreatment with meldonium rapidly attenuates neuronal pathological damage, cerebral blood flow changes, and mitochondrial damage and its cascade response to oxidative stress injury, thereby improving survival rates in mice brain and primary hippocampal neurons, revealing the remarkable pharmacological efficacy of meldonium in acute high-altitude brain injury. On the one hand, we confirmed that meldonium directly interacts with phosphoglycerate kinase 1 (PGK1) to promote its activity, which improved glycolysis and pyruvate metabolism to promote ATP production. On the other hand, meldonium also ameliorates mitochondrial damage by PGK1 translocating to mitochondria under acute hypoxia to regulate the activity of TNF receptor-associated protein 1 (TRAP1) molecular chaperones.
Conclusion: These results further explain the mechanism of meldonium as an energy optimizer and provide a strategy for preventing acute hypobaric hypoxia brain injury at high altitudes.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.