QKSAN:量子内核自关注网络。

Ren-Xin Zhao, Jinjing Shi, Xuelong Li
{"title":"QKSAN:量子内核自关注网络。","authors":"Ren-Xin Zhao, Jinjing Shi, Xuelong Li","doi":"10.1109/TPAMI.2024.3434974","DOIUrl":null,"url":null,"abstract":"<p><p>The Self-Attention Mechanism (SAM) excels at distilling important information from the interior of data to improve the computational efficiency of models. Nevertheless, many Quantum Machine Learning (QML) models lack the ability to distinguish the intrinsic connections of information like SAM, which limits their effectiveness on massive high-dimensional quantum data. To tackle the above issue, a Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM. Further, a Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques to release half of quantum resources by mid-circuit measurement, thereby bolstering both feasibility and adaptability. Simultaneously, the Quantum Kernel Self-Attention Score (QKSAS) with an exponentially large characterization space is spawned to accommodate more information and determine the measurement conditions. Eventually, four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST, where the QKSAS tests and correlation assessments between noise immunity and learning ability are executed on the best-performing sub-model. The paramount experimental finding is that the QKSAN subclasses possess the potential learning advantage of acquiring impressive accuracies exceeding 98.05% with far fewer parameters than classical machine learning models. Predictably, QKSAN lays the foundation for future quantum computers to perform machine learning on massive amounts of data while driving advances in areas such as quantum computer vision.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QKSAN: A Quantum Kernel Self-Attention Network.\",\"authors\":\"Ren-Xin Zhao, Jinjing Shi, Xuelong Li\",\"doi\":\"10.1109/TPAMI.2024.3434974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Self-Attention Mechanism (SAM) excels at distilling important information from the interior of data to improve the computational efficiency of models. Nevertheless, many Quantum Machine Learning (QML) models lack the ability to distinguish the intrinsic connections of information like SAM, which limits their effectiveness on massive high-dimensional quantum data. To tackle the above issue, a Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM. Further, a Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques to release half of quantum resources by mid-circuit measurement, thereby bolstering both feasibility and adaptability. Simultaneously, the Quantum Kernel Self-Attention Score (QKSAS) with an exponentially large characterization space is spawned to accommodate more information and determine the measurement conditions. Eventually, four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST, where the QKSAS tests and correlation assessments between noise immunity and learning ability are executed on the best-performing sub-model. The paramount experimental finding is that the QKSAN subclasses possess the potential learning advantage of acquiring impressive accuracies exceeding 98.05% with far fewer parameters than classical machine learning models. Predictably, QKSAN lays the foundation for future quantum computers to perform machine learning on massive amounts of data while driving advances in areas such as quantum computer vision.</p>\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAMI.2024.3434974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2024.3434974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自注意机制(SAM)擅长从数据内部提炼重要信息,从而提高模型的计算效率。然而,许多量子机器学习(QML)模型缺乏像 SAM 那样分辨信息内在联系的能力,这限制了它们在海量高维量子数据上的有效性。为解决上述问题,我们引入了量子内核自关注机制(QKSAM),将量子内核方法(QKM)的数据表示优势与 SAM 的高效信息提取能力结合起来。此外,还在 QKSAM 的基础上提出了量子核自保持网络(QKSAN)框架,该框架巧妙地结合了延迟测量原理(DMP)和条件测量技术,通过中途测量释放一半量子资源,从而提高了可行性和适应性。与此同时,量子内核自注意分数(QKSAS)的表征空间呈指数级增长,可容纳更多信息并确定测量条件。最终,在 PennyLane 和 IBM Qiskit 平台上部署了四个 QKSAN 子模型,对 MNIST 和时尚 MNIST 进行二元分类,并在表现最佳的子模型上执行 QKSAS 测试以及抗噪性和学习能力之间的相关性评估。最重要的实验发现是,QKSAN 子类具有潜在的学习优势,与经典机器学习模型相比,它能以更少的参数获得超过 98.05% 的惊人准确率。可以预见,QKSAN 为未来量子计算机在海量数据上执行机器学习奠定了基础,同时推动了量子计算机视觉等领域的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QKSAN: A Quantum Kernel Self-Attention Network.

The Self-Attention Mechanism (SAM) excels at distilling important information from the interior of data to improve the computational efficiency of models. Nevertheless, many Quantum Machine Learning (QML) models lack the ability to distinguish the intrinsic connections of information like SAM, which limits their effectiveness on massive high-dimensional quantum data. To tackle the above issue, a Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM. Further, a Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques to release half of quantum resources by mid-circuit measurement, thereby bolstering both feasibility and adaptability. Simultaneously, the Quantum Kernel Self-Attention Score (QKSAS) with an exponentially large characterization space is spawned to accommodate more information and determine the measurement conditions. Eventually, four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST, where the QKSAS tests and correlation assessments between noise immunity and learning ability are executed on the best-performing sub-model. The paramount experimental finding is that the QKSAN subclasses possess the potential learning advantage of acquiring impressive accuracies exceeding 98.05% with far fewer parameters than classical machine learning models. Predictably, QKSAN lays the foundation for future quantum computers to perform machine learning on massive amounts of data while driving advances in areas such as quantum computer vision.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diversifying Policies with Non-Markov Dispersion to Expand the Solution Space. Integrating Neural Radiance Fields End-to-End for Cognitive Visuomotor Navigation. Variational Label Enhancement for Instance-Dependent Partial Label Learning. TagCLIP: Improving Discrimination Ability of Zero-Shot Semantic Segmentation. Efficient Neural Collaborative Search for Pickup and Delivery Problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1