SrTiO3 量子准电中 Mn2+ 离子的结构不稳定性和晶格位点占位

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review B Pub Date : 2024-07-30 DOI:10.1103/physrevb.110.024114
V. Laguta, O. Laguta, I. Zdeg, P. Neugebauer
{"title":"SrTiO3 量子准电中 Mn2+ 离子的结构不稳定性和晶格位点占位","authors":"V. Laguta, O. Laguta, I. Zdeg, P. Neugebauer","doi":"10.1103/physrevb.110.024114","DOIUrl":null,"url":null,"abstract":"Strontium titanate (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>SrTi</mi><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math>) is the most known material from the family of quantum paraelectrics. Thanks to its extremely “soft” lattice, its functionality can be easily tuned by applying both external stimuli (pressure, strain, electric field) and through doping or isotope exchange. In this paper, we present the results of a detailed study of two <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">M</mi><msup><mrow><mi mathvariant=\"normal\">n</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math> centers in Mn-doped <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>SrTi</mi><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> single crystals using both continuous wave and pulsed electron paramagnetic resonance (EPR) spectroscopy at frequencies from 9.5 to 427 GHz and temperatures from 5 to 296 K. The first center is created by a <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">M</mi><msup><mrow><mi mathvariant=\"normal\">n</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math> ion at the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">S</mi><msup><mrow><mi mathvariant=\"normal\">r</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math> lattice site in an off-center position. Its spectroscopic characteristics were determined for both fast and slow motion regimes of the impurity ion. In particular, all spin transitions allowed by the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">M</mi><msup><mrow><mi mathvariant=\"normal\">n</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math> spin were well resolved in the slow motion regime. The second center is created by a <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">M</mi><msup><mrow><mi mathvariant=\"normal\">n</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math> ion at the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">T</mi><msup><mrow><mi mathvariant=\"normal\">i</mi></mrow><mrow><mn>4</mn><mo>+</mo></mrow></msup></mrow></math> position in the center of the oxygen octahedron. It has been established that the surrounding of this ion undergoes strong distortion when cooled below the phase transition temperature <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>T</mi><mi>c</mi></msub><mo>=</mo><mn>105</mn></mrow></math> K, stimulated by the rotation of the oxygen octahedron. The present data also perfectly explain the previously obtained EPR data from measurements of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>SrTi</mi><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math>:Mn ceramics at low microwave frequencies (9–10 GHz).","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural instability and lattice site occupation of Mn2+ ions in the SrTiO3 quantum paraelectric\",\"authors\":\"V. Laguta, O. Laguta, I. Zdeg, P. Neugebauer\",\"doi\":\"10.1103/physrevb.110.024114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strontium titanate (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>SrTi</mi><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math>) is the most known material from the family of quantum paraelectrics. Thanks to its extremely “soft” lattice, its functionality can be easily tuned by applying both external stimuli (pressure, strain, electric field) and through doping or isotope exchange. In this paper, we present the results of a detailed study of two <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">M</mi><msup><mrow><mi mathvariant=\\\"normal\\\">n</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math> centers in Mn-doped <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>SrTi</mi><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> single crystals using both continuous wave and pulsed electron paramagnetic resonance (EPR) spectroscopy at frequencies from 9.5 to 427 GHz and temperatures from 5 to 296 K. The first center is created by a <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">M</mi><msup><mrow><mi mathvariant=\\\"normal\\\">n</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math> ion at the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">S</mi><msup><mrow><mi mathvariant=\\\"normal\\\">r</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math> lattice site in an off-center position. Its spectroscopic characteristics were determined for both fast and slow motion regimes of the impurity ion. In particular, all spin transitions allowed by the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">M</mi><msup><mrow><mi mathvariant=\\\"normal\\\">n</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math> spin were well resolved in the slow motion regime. The second center is created by a <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">M</mi><msup><mrow><mi mathvariant=\\\"normal\\\">n</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math> ion at the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">T</mi><msup><mrow><mi mathvariant=\\\"normal\\\">i</mi></mrow><mrow><mn>4</mn><mo>+</mo></mrow></msup></mrow></math> position in the center of the oxygen octahedron. It has been established that the surrounding of this ion undergoes strong distortion when cooled below the phase transition temperature <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>T</mi><mi>c</mi></msub><mo>=</mo><mn>105</mn></mrow></math> K, stimulated by the rotation of the oxygen octahedron. The present data also perfectly explain the previously obtained EPR data from measurements of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>SrTi</mi><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math>:Mn ceramics at low microwave frequencies (9–10 GHz).\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.024114\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.024114","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

钛酸锶(SrTiO3)是量子准电族中最著名的材料。由于其晶格极其 "柔软",因此可以通过外部刺激(压力、应变、电场)以及掺杂或同位素交换来轻松调整其功能。本文采用连续波和脉冲电子顺磁共振 (EPR) 光谱法,在 9.5 至 427 GHz 频率和 5 至 296 K 温度范围内对掺锰 SrTiO3 单晶中的两个 Mn2+ 中心进行了详细研究。它的光谱特征是在杂质离子的快速和慢速运动状态下测定的。特别是,Mn2+ 自旋所允许的所有自旋转变在慢速运动状态下都得到了很好的解析。第二个中心是由位于氧八面体中心 Ti4+ 位置的 Mn2+ 离子产生的。已经证实,当冷却到相变温度 Tc=105 K 以下时,在氧八面体旋转的刺激下,该离子的周围会发生强烈的畸变。本数据还完美地解释了之前在低微波频率(9-10 千兆赫)下测量 SrTiO3:Mn 陶瓷所获得的 EPR 数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural instability and lattice site occupation of Mn2+ ions in the SrTiO3 quantum paraelectric
Strontium titanate (SrTiO3) is the most known material from the family of quantum paraelectrics. Thanks to its extremely “soft” lattice, its functionality can be easily tuned by applying both external stimuli (pressure, strain, electric field) and through doping or isotope exchange. In this paper, we present the results of a detailed study of two Mn2+ centers in Mn-doped SrTiO3 single crystals using both continuous wave and pulsed electron paramagnetic resonance (EPR) spectroscopy at frequencies from 9.5 to 427 GHz and temperatures from 5 to 296 K. The first center is created by a Mn2+ ion at the Sr2+ lattice site in an off-center position. Its spectroscopic characteristics were determined for both fast and slow motion regimes of the impurity ion. In particular, all spin transitions allowed by the Mn2+ spin were well resolved in the slow motion regime. The second center is created by a Mn2+ ion at the Ti4+ position in the center of the oxygen octahedron. It has been established that the surrounding of this ion undergoes strong distortion when cooled below the phase transition temperature Tc=105 K, stimulated by the rotation of the oxygen octahedron. The present data also perfectly explain the previously obtained EPR data from measurements of SrTiO3:Mn ceramics at low microwave frequencies (9–10 GHz).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Disordered Landau levels of single-cone massless Dirac fermions with broken particle-hole symmetry Locality, correlations, information, and non-Hermitian quantum systems Insights into the bonding properties and magnetism of the Mn-B system with a physically constrained neural network functional Electronic band structure of high-symmetry homobilayers of transition metal dichalcogenides Uncovering gauge-dependent critical order-parameter correlations by a stochastic gauge fixing at O(N)* and Ising* continuous transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1