Xing Tong, Yue-E Zhang, Bao-Shuang Shang, Hua-Ping Zhang, Zezhou Li, Yao Zhang, Gang Wang, Yan-Hui Liu, Yong Zhao, Bo Zhang, Hai-Bo Ke, Jihan Zhou, Hai-Yang Bai, Wei-Hua Wang
{"title":"打破单原子金属的玻璃化限制","authors":"Xing Tong, Yue-E Zhang, Bao-Shuang Shang, Hua-Ping Zhang, Zezhou Li, Yao Zhang, Gang Wang, Yan-Hui Liu, Yong Zhao, Bo Zhang, Hai-Bo Ke, Jihan Zhou, Hai-Yang Bai, Wei-Hua Wang","doi":"10.1038/s41563-024-01967-0","DOIUrl":null,"url":null,"abstract":"The question of whether all materials can solidify into the glassy form proposed by Turnbull half a century ago remains unsolved. Some of the simplest systems of monatomic metals have not been vitrified, especially the close-packed face-centred cubic metals. Here we report the vitrification of gold, which is notoriously difficult to be vitrified, and several similar close-packed face-centred cubic and hexagonal metals using a method of picosecond pulsed laser ablation in a liquid medium. The vitrification occurs through the rapid cooling during laser ablation and the inhibition of nucleation by the liquid medium. Using this method, a large number of atomic configurations, including glassy configurations, can be generated simultaneously, from which a stable glass state can be sampled. Simulations demonstrate that the favourable stability of monatomic metals stems from the strong topological frustration of icosahedra-like clusters. Our work breaks the limitation of the glass-forming ability of matter, indicating that vitrification is an intrinsic property of matter and providing a strategy for the preparation and design of metallic glasses from an atomic configuration perspective. It is shown that gold and several similar close-packed face-centred cubic and hexagonal metals can be vitrified, which breaks the limitation of the glass-forming ability of matter.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 9","pages":"1193-1199"},"PeriodicalIF":37.2000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking the vitrification limitation of monatomic metals\",\"authors\":\"Xing Tong, Yue-E Zhang, Bao-Shuang Shang, Hua-Ping Zhang, Zezhou Li, Yao Zhang, Gang Wang, Yan-Hui Liu, Yong Zhao, Bo Zhang, Hai-Bo Ke, Jihan Zhou, Hai-Yang Bai, Wei-Hua Wang\",\"doi\":\"10.1038/s41563-024-01967-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The question of whether all materials can solidify into the glassy form proposed by Turnbull half a century ago remains unsolved. Some of the simplest systems of monatomic metals have not been vitrified, especially the close-packed face-centred cubic metals. Here we report the vitrification of gold, which is notoriously difficult to be vitrified, and several similar close-packed face-centred cubic and hexagonal metals using a method of picosecond pulsed laser ablation in a liquid medium. The vitrification occurs through the rapid cooling during laser ablation and the inhibition of nucleation by the liquid medium. Using this method, a large number of atomic configurations, including glassy configurations, can be generated simultaneously, from which a stable glass state can be sampled. Simulations demonstrate that the favourable stability of monatomic metals stems from the strong topological frustration of icosahedra-like clusters. Our work breaks the limitation of the glass-forming ability of matter, indicating that vitrification is an intrinsic property of matter and providing a strategy for the preparation and design of metallic glasses from an atomic configuration perspective. It is shown that gold and several similar close-packed face-centred cubic and hexagonal metals can be vitrified, which breaks the limitation of the glass-forming ability of matter.\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"23 9\",\"pages\":\"1193-1199\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41563-024-01967-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-024-01967-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Breaking the vitrification limitation of monatomic metals
The question of whether all materials can solidify into the glassy form proposed by Turnbull half a century ago remains unsolved. Some of the simplest systems of monatomic metals have not been vitrified, especially the close-packed face-centred cubic metals. Here we report the vitrification of gold, which is notoriously difficult to be vitrified, and several similar close-packed face-centred cubic and hexagonal metals using a method of picosecond pulsed laser ablation in a liquid medium. The vitrification occurs through the rapid cooling during laser ablation and the inhibition of nucleation by the liquid medium. Using this method, a large number of atomic configurations, including glassy configurations, can be generated simultaneously, from which a stable glass state can be sampled. Simulations demonstrate that the favourable stability of monatomic metals stems from the strong topological frustration of icosahedra-like clusters. Our work breaks the limitation of the glass-forming ability of matter, indicating that vitrification is an intrinsic property of matter and providing a strategy for the preparation and design of metallic glasses from an atomic configuration perspective. It is shown that gold and several similar close-packed face-centred cubic and hexagonal metals can be vitrified, which breaks the limitation of the glass-forming ability of matter.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.