将业务分析融入医疗保健:通过数据驱动决策提高患者疗效

Mojeed Dayo Ajegbile, Janet Aderonke Olaboye, Chikwudi Cosmos Maha, Geneva Tamunobarafiri Igwama, Samira Abdul
{"title":"将业务分析融入医疗保健:通过数据驱动决策提高患者疗效","authors":"Mojeed Dayo Ajegbile, Janet Aderonke Olaboye, Chikwudi Cosmos Maha, Geneva Tamunobarafiri Igwama, Samira Abdul","doi":"10.30574/wjbphs.2024.19.1.0436","DOIUrl":null,"url":null,"abstract":"This review paper explores the integration of business analytics in healthcare, focusing on its role in enhancing patient outcomes through data-driven decision-making. Key impact areas include improved diagnostic accuracy, personalized medicine, and operational efficiency. The paper also addresses data privacy challenges, quality, and organizational resistance. Emerging technologies such as AI, machine learning, and big data analytics are highlighted as transformative tools for healthcare innovation. Strategic recommendations emphasize the need for robust technical infrastructure, workforce training, and supportive policy frameworks. The conclusion underscores the potential of business analytics to revolutionize healthcare by enabling more informed, efficient, and patient-centered care.","PeriodicalId":23738,"journal":{"name":"World Journal of Biology Pharmacy and Health Sciences","volume":"7 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating business analytics in healthcare: Enhancing patient outcomes through data-driven decision making\",\"authors\":\"Mojeed Dayo Ajegbile, Janet Aderonke Olaboye, Chikwudi Cosmos Maha, Geneva Tamunobarafiri Igwama, Samira Abdul\",\"doi\":\"10.30574/wjbphs.2024.19.1.0436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review paper explores the integration of business analytics in healthcare, focusing on its role in enhancing patient outcomes through data-driven decision-making. Key impact areas include improved diagnostic accuracy, personalized medicine, and operational efficiency. The paper also addresses data privacy challenges, quality, and organizational resistance. Emerging technologies such as AI, machine learning, and big data analytics are highlighted as transformative tools for healthcare innovation. Strategic recommendations emphasize the need for robust technical infrastructure, workforce training, and supportive policy frameworks. The conclusion underscores the potential of business analytics to revolutionize healthcare by enabling more informed, efficient, and patient-centered care.\",\"PeriodicalId\":23738,\"journal\":{\"name\":\"World Journal of Biology Pharmacy and Health Sciences\",\"volume\":\"7 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Biology Pharmacy and Health Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30574/wjbphs.2024.19.1.0436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Biology Pharmacy and Health Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30574/wjbphs.2024.19.1.0436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述论文探讨了业务分析在医疗保健领域的整合,重点关注其在通过数据驱动决策提高患者治疗效果方面的作用。主要影响领域包括提高诊断准确性、个性化医疗和运营效率。本文还讨论了数据隐私挑战、质量和组织阻力等问题。人工智能、机器学习和大数据分析等新兴技术被强调为医疗创新的变革工具。战略建议强调需要强大的技术基础设施、劳动力培训和支持性政策框架。结论强调了商业分析的潜力,即通过实现更加知情、高效和以患者为中心的护理,彻底改变医疗保健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating business analytics in healthcare: Enhancing patient outcomes through data-driven decision making
This review paper explores the integration of business analytics in healthcare, focusing on its role in enhancing patient outcomes through data-driven decision-making. Key impact areas include improved diagnostic accuracy, personalized medicine, and operational efficiency. The paper also addresses data privacy challenges, quality, and organizational resistance. Emerging technologies such as AI, machine learning, and big data analytics are highlighted as transformative tools for healthcare innovation. Strategic recommendations emphasize the need for robust technical infrastructure, workforce training, and supportive policy frameworks. The conclusion underscores the potential of business analytics to revolutionize healthcare by enabling more informed, efficient, and patient-centered care.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational strategies for drug discovery: Harnessing Indian medicinal plants A narrative review of pharmacological and phytochemical properties of decorative flowering plants at Hyde Park Zoo Sanctuary and Tropical Gardens Inc., Guyana Recent updates on the safety of neurosurgery during the COVID-19 pandemic Development and characterization of Decitabine Niosomes Attachment style and relationship satisfaction among early adults
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1