Victor Ugonna Akpulonu, Agbese Echo Agbese, Chijioke Emmanuel Obizue, Aernan Nater, Nasiru Abdulsalam, Ikegbo Stanely Ogochukwu, Murtala Aminu-Baba, Adoyi Helen Ene
{"title":"利用物联网设计和构建基于 Arduino 的温室监控系统","authors":"Victor Ugonna Akpulonu, Agbese Echo Agbese, Chijioke Emmanuel Obizue, Aernan Nater, Nasiru Abdulsalam, Ikegbo Stanely Ogochukwu, Murtala Aminu-Baba, Adoyi Helen Ene","doi":"10.30574/wjaets.2024.12.2.0280","DOIUrl":null,"url":null,"abstract":"The rapid advancement of electronic device technologies has led to the creation of intelligent systems aimed at enhancing various aspects of human life. One of the most significant of these advancements is the Internet of Things (IoT), which has revolutionized monitoring, controlling, and security features across numerous applications. In agriculture, IoT-based systems are increasingly crucial for optimizing greenhouse conditions, essential for efficient crop cultivation. This research focuses on the design and construction of an Arduino-based greenhouse monitoring system utilizing IoT technology. The system automates the monitoring and regulation of key environmental parameters such as temperature, humidity, light, sodium, potassium, phosphorus and soil moisture, using sensors and actuators managed by the microcontroller. Prototyping methods was adopted. The integration of IoT enables real-time data collection and remote control, significantly reducing manual labor and enhancing crop yield. Additionally, the system incorporates dual power sources, utilizing both grid and solar energy to ensure uninterrupted operation. The lettuce crop yield increase by 20% which makes the system a better alternative to other. The implementation of this automated system showcases the potential of IoT in creating smarter, more sustainable agricultural practices.","PeriodicalId":275182,"journal":{"name":"World Journal of Advanced Engineering Technology and Sciences","volume":"1 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and construction of Arduino based greenhouse monitoring system using IoT\",\"authors\":\"Victor Ugonna Akpulonu, Agbese Echo Agbese, Chijioke Emmanuel Obizue, Aernan Nater, Nasiru Abdulsalam, Ikegbo Stanely Ogochukwu, Murtala Aminu-Baba, Adoyi Helen Ene\",\"doi\":\"10.30574/wjaets.2024.12.2.0280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid advancement of electronic device technologies has led to the creation of intelligent systems aimed at enhancing various aspects of human life. One of the most significant of these advancements is the Internet of Things (IoT), which has revolutionized monitoring, controlling, and security features across numerous applications. In agriculture, IoT-based systems are increasingly crucial for optimizing greenhouse conditions, essential for efficient crop cultivation. This research focuses on the design and construction of an Arduino-based greenhouse monitoring system utilizing IoT technology. The system automates the monitoring and regulation of key environmental parameters such as temperature, humidity, light, sodium, potassium, phosphorus and soil moisture, using sensors and actuators managed by the microcontroller. Prototyping methods was adopted. The integration of IoT enables real-time data collection and remote control, significantly reducing manual labor and enhancing crop yield. Additionally, the system incorporates dual power sources, utilizing both grid and solar energy to ensure uninterrupted operation. The lettuce crop yield increase by 20% which makes the system a better alternative to other. The implementation of this automated system showcases the potential of IoT in creating smarter, more sustainable agricultural practices.\",\"PeriodicalId\":275182,\"journal\":{\"name\":\"World Journal of Advanced Engineering Technology and Sciences\",\"volume\":\"1 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Advanced Engineering Technology and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30574/wjaets.2024.12.2.0280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Advanced Engineering Technology and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30574/wjaets.2024.12.2.0280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and construction of Arduino based greenhouse monitoring system using IoT
The rapid advancement of electronic device technologies has led to the creation of intelligent systems aimed at enhancing various aspects of human life. One of the most significant of these advancements is the Internet of Things (IoT), which has revolutionized monitoring, controlling, and security features across numerous applications. In agriculture, IoT-based systems are increasingly crucial for optimizing greenhouse conditions, essential for efficient crop cultivation. This research focuses on the design and construction of an Arduino-based greenhouse monitoring system utilizing IoT technology. The system automates the monitoring and regulation of key environmental parameters such as temperature, humidity, light, sodium, potassium, phosphorus and soil moisture, using sensors and actuators managed by the microcontroller. Prototyping methods was adopted. The integration of IoT enables real-time data collection and remote control, significantly reducing manual labor and enhancing crop yield. Additionally, the system incorporates dual power sources, utilizing both grid and solar energy to ensure uninterrupted operation. The lettuce crop yield increase by 20% which makes the system a better alternative to other. The implementation of this automated system showcases the potential of IoT in creating smarter, more sustainable agricultural practices.