Ben Wang, Bing Zhao, Qi Zhang, Yangyang Zhao, Chang Song
{"title":"考虑温度影响的纤维增强树脂基复合材料划痕中的划痕力和材料去除机理研究","authors":"Ben Wang, Bing Zhao, Qi Zhang, Yangyang Zhao, Chang Song","doi":"10.1177/00219983241268873","DOIUrl":null,"url":null,"abstract":"Fiber-reinforced resin matrix composites (FRC) are extensively utilized in aerospace due to commendable mechanical properties. However, during the machining process, FRCs are vulnerable to the effects of cutting heat, resulting in a reduction of their mechanical properties. As a result, the quality and precision of molded parts may suffer. Therefore, to examine the removal mechanism and damage forms of FRC under varying temperatures, this study utilizes QFRP (Quartz fiber reinforced polyimide resin matrix composites) as a prime example. Scratch tests on QFRP employ identical scratching parameters at different heating temperatures. The results are analyzed, including scratch force characteristics, cross-section profile characteristics, surface damage, and material removal mechanism. The results show that, firstly, with the increasing heating temperature, the scratch force fluctuates in a small range and then decreases significantly. Compared with 25°C, scratch force Fy and Fz amplitude decreases by 36.8% and 44.6%, respectively, when the heating temperature is 425°C. Secondly, due to the increase in temperature, the mechanical properties of the matrix decreased, increasing the scratch damage width with the increase in temperature. Finally, combined with the scratch SEM photographs, this study indicated that when the temperature was much below the matrix’s Tg, the polyimide matrix and quartz fiber were removed by the indenter by shear fracture. In contrast, when the temperature was close to or exceeded the matrix’s Tg, the matrix showed enhanced plasticity and mobility, resulting in the matrix undergoing significant plastic deformation, and the indenter removed the quartz fiber by bending fracture.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on scratching force and material removal mechanism in scratching of fiber-reinforced resin matrix composites considering the effect of temperature\",\"authors\":\"Ben Wang, Bing Zhao, Qi Zhang, Yangyang Zhao, Chang Song\",\"doi\":\"10.1177/00219983241268873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fiber-reinforced resin matrix composites (FRC) are extensively utilized in aerospace due to commendable mechanical properties. However, during the machining process, FRCs are vulnerable to the effects of cutting heat, resulting in a reduction of their mechanical properties. As a result, the quality and precision of molded parts may suffer. Therefore, to examine the removal mechanism and damage forms of FRC under varying temperatures, this study utilizes QFRP (Quartz fiber reinforced polyimide resin matrix composites) as a prime example. Scratch tests on QFRP employ identical scratching parameters at different heating temperatures. The results are analyzed, including scratch force characteristics, cross-section profile characteristics, surface damage, and material removal mechanism. The results show that, firstly, with the increasing heating temperature, the scratch force fluctuates in a small range and then decreases significantly. Compared with 25°C, scratch force Fy and Fz amplitude decreases by 36.8% and 44.6%, respectively, when the heating temperature is 425°C. Secondly, due to the increase in temperature, the mechanical properties of the matrix decreased, increasing the scratch damage width with the increase in temperature. Finally, combined with the scratch SEM photographs, this study indicated that when the temperature was much below the matrix’s Tg, the polyimide matrix and quartz fiber were removed by the indenter by shear fracture. In contrast, when the temperature was close to or exceeded the matrix’s Tg, the matrix showed enhanced plasticity and mobility, resulting in the matrix undergoing significant plastic deformation, and the indenter removed the quartz fiber by bending fracture.\",\"PeriodicalId\":15489,\"journal\":{\"name\":\"Journal of Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241268873\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241268873","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Investigation on scratching force and material removal mechanism in scratching of fiber-reinforced resin matrix composites considering the effect of temperature
Fiber-reinforced resin matrix composites (FRC) are extensively utilized in aerospace due to commendable mechanical properties. However, during the machining process, FRCs are vulnerable to the effects of cutting heat, resulting in a reduction of their mechanical properties. As a result, the quality and precision of molded parts may suffer. Therefore, to examine the removal mechanism and damage forms of FRC under varying temperatures, this study utilizes QFRP (Quartz fiber reinforced polyimide resin matrix composites) as a prime example. Scratch tests on QFRP employ identical scratching parameters at different heating temperatures. The results are analyzed, including scratch force characteristics, cross-section profile characteristics, surface damage, and material removal mechanism. The results show that, firstly, with the increasing heating temperature, the scratch force fluctuates in a small range and then decreases significantly. Compared with 25°C, scratch force Fy and Fz amplitude decreases by 36.8% and 44.6%, respectively, when the heating temperature is 425°C. Secondly, due to the increase in temperature, the mechanical properties of the matrix decreased, increasing the scratch damage width with the increase in temperature. Finally, combined with the scratch SEM photographs, this study indicated that when the temperature was much below the matrix’s Tg, the polyimide matrix and quartz fiber were removed by the indenter by shear fracture. In contrast, when the temperature was close to or exceeded the matrix’s Tg, the matrix showed enhanced plasticity and mobility, resulting in the matrix undergoing significant plastic deformation, and the indenter removed the quartz fiber by bending fracture.
期刊介绍:
Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).