{"title":"台湾基于地形的地下水潜力评估和集水规模的长期监测","authors":"Jung-Jun Lin, Chia-Hung Liang","doi":"10.5194/adgeo-64-13-2024","DOIUrl":null,"url":null,"abstract":"Abstract. In groundwater resource management, the hydrogeological framework significantly influences groundwater flow and storage. The complexity of groundwater systems in orogenic regions necessitates comprehensive investigations. To ensure sustainable groundwater management and address global climate change impacts, hydrogeological surveys and long-term monitoring at the catchment scale are essential. However, regional surveys are often limited by budget constraints and field accessibility. Therefore, integrating remote sensing and GIS technology to analyze terrain features, combined with field test results, facilitates the establishment of comprehensive terrain classifications and groundwater potential maps, aiding subsequent groundwater resource investigations and management. This study collected data from 75 field investigation sites spanning the mountainous to plain regions of central Taiwan at the catchment scale. The data included regolith thickness, hydraulic parameters, and nearly ten years of groundwater level observations. Terrain classifications were based on indices such as the topographic wetness index, topographic position index, and slope degree, resulting in seven distinct terrain types. The results revealed that in main riverbed deposits and flat slopes, there were higher average well yields and groundwater-level fluctuations. Greater fluctuations were observed in areas characterized by ridges, colluvium, and low elevation in slope areas and valleys. The variability in shallow aquifers was particularly pronounced, with outliers reaching higher levels in slope and valley terrains. These findings underscore the complexity of groundwater dynamics in diverse terrain types, highlighting the need for tailored management strategies to ensure sustainable groundwater resources.\n","PeriodicalId":7329,"journal":{"name":"Advances in Geosciences","volume":"36 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terrain-based evaluation of groundwater potential and long-term monitoring at the catchment scale in Taiwan\",\"authors\":\"Jung-Jun Lin, Chia-Hung Liang\",\"doi\":\"10.5194/adgeo-64-13-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In groundwater resource management, the hydrogeological framework significantly influences groundwater flow and storage. The complexity of groundwater systems in orogenic regions necessitates comprehensive investigations. To ensure sustainable groundwater management and address global climate change impacts, hydrogeological surveys and long-term monitoring at the catchment scale are essential. However, regional surveys are often limited by budget constraints and field accessibility. Therefore, integrating remote sensing and GIS technology to analyze terrain features, combined with field test results, facilitates the establishment of comprehensive terrain classifications and groundwater potential maps, aiding subsequent groundwater resource investigations and management. This study collected data from 75 field investigation sites spanning the mountainous to plain regions of central Taiwan at the catchment scale. The data included regolith thickness, hydraulic parameters, and nearly ten years of groundwater level observations. Terrain classifications were based on indices such as the topographic wetness index, topographic position index, and slope degree, resulting in seven distinct terrain types. The results revealed that in main riverbed deposits and flat slopes, there were higher average well yields and groundwater-level fluctuations. Greater fluctuations were observed in areas characterized by ridges, colluvium, and low elevation in slope areas and valleys. The variability in shallow aquifers was particularly pronounced, with outliers reaching higher levels in slope and valley terrains. These findings underscore the complexity of groundwater dynamics in diverse terrain types, highlighting the need for tailored management strategies to ensure sustainable groundwater resources.\\n\",\"PeriodicalId\":7329,\"journal\":{\"name\":\"Advances in Geosciences\",\"volume\":\"36 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/adgeo-64-13-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/adgeo-64-13-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Terrain-based evaluation of groundwater potential and long-term monitoring at the catchment scale in Taiwan
Abstract. In groundwater resource management, the hydrogeological framework significantly influences groundwater flow and storage. The complexity of groundwater systems in orogenic regions necessitates comprehensive investigations. To ensure sustainable groundwater management and address global climate change impacts, hydrogeological surveys and long-term monitoring at the catchment scale are essential. However, regional surveys are often limited by budget constraints and field accessibility. Therefore, integrating remote sensing and GIS technology to analyze terrain features, combined with field test results, facilitates the establishment of comprehensive terrain classifications and groundwater potential maps, aiding subsequent groundwater resource investigations and management. This study collected data from 75 field investigation sites spanning the mountainous to plain regions of central Taiwan at the catchment scale. The data included regolith thickness, hydraulic parameters, and nearly ten years of groundwater level observations. Terrain classifications were based on indices such as the topographic wetness index, topographic position index, and slope degree, resulting in seven distinct terrain types. The results revealed that in main riverbed deposits and flat slopes, there were higher average well yields and groundwater-level fluctuations. Greater fluctuations were observed in areas characterized by ridges, colluvium, and low elevation in slope areas and valleys. The variability in shallow aquifers was particularly pronounced, with outliers reaching higher levels in slope and valley terrains. These findings underscore the complexity of groundwater dynamics in diverse terrain types, highlighting the need for tailored management strategies to ensure sustainable groundwater resources.
Advances in GeosciencesEarth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
3.70
自引率
0.00%
发文量
16
审稿时长
30 weeks
期刊介绍:
Advances in Geosciences (ADGEO) is an international, interdisciplinary journal for fast publication of collections of short, but self-contained communications in the Earth, planetary and solar system sciences, published in separate volumes online with the option of a publication on paper (print-on-demand). The collections may include papers presented at scientific meetings (proceedings) or articles on a well defined topic compiled by individual editors or organizations (special publications). The evaluation of the manuscript is organized by Guest-Editors, i.e. either by the conveners of a session of a conference or by the organizers of a meeting or workshop or by editors appointed otherwise, and their chosen referees.