地面粒化高炉渣、锂渣和钢渣碱活性材料的抗压强度和抗硫酸盐侵蚀能力

IF 3.1 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Buildings Pub Date : 2024-07-26 DOI:10.3390/buildings14082320
Shunshan Zhang, Yannian Zhang, Jisong Zhang, Yunkai Li
{"title":"地面粒化高炉渣、锂渣和钢渣碱活性材料的抗压强度和抗硫酸盐侵蚀能力","authors":"Shunshan Zhang, Yannian Zhang, Jisong Zhang, Yunkai Li","doi":"10.3390/buildings14082320","DOIUrl":null,"url":null,"abstract":"Alkali-activated materials (AAMs) are favoured for their low carbon emissions, excellent mechanical properties, and excellent chemical resistance. In this paper, ternary alkali-activated cementitious materials were prepared from slag, steel slag, and lithium slag to investigate their strength and resistance to sulphate attack. A series of experiments were conducted using a variety of material combinations, alkali activator combinations, water–binder ratios, and exposure environments. These experiments employed both macro and micro comparative analyses. The hydration reaction products, physical phase composition, and microstructure of the ground granulated furnace slag, lithium slag, and steel slag (GLS) ternary AAMs were analysed using x-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). It was experimentally demonstrated that the GLS ternary AAMs had excellent compressive strength, good resistance to sodium sulphate erosion, and that resistance to magnesium sulphate erosion decreased with time. This study contributes to the advancement of knowledge regarding the utilisation of lithium slag and steel slag, and offers new insights into the field of alkali-activated cementitious materials and their resistance to sulphate erosion.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compressive Strength and Resistance to Sulphate Attack of Ground Granulated Blast Furnace Slag, Lithium Slag, and Steel Slag Alkali-Activated Materials\",\"authors\":\"Shunshan Zhang, Yannian Zhang, Jisong Zhang, Yunkai Li\",\"doi\":\"10.3390/buildings14082320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alkali-activated materials (AAMs) are favoured for their low carbon emissions, excellent mechanical properties, and excellent chemical resistance. In this paper, ternary alkali-activated cementitious materials were prepared from slag, steel slag, and lithium slag to investigate their strength and resistance to sulphate attack. A series of experiments were conducted using a variety of material combinations, alkali activator combinations, water–binder ratios, and exposure environments. These experiments employed both macro and micro comparative analyses. The hydration reaction products, physical phase composition, and microstructure of the ground granulated furnace slag, lithium slag, and steel slag (GLS) ternary AAMs were analysed using x-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). It was experimentally demonstrated that the GLS ternary AAMs had excellent compressive strength, good resistance to sodium sulphate erosion, and that resistance to magnesium sulphate erosion decreased with time. This study contributes to the advancement of knowledge regarding the utilisation of lithium slag and steel slag, and offers new insights into the field of alkali-activated cementitious materials and their resistance to sulphate erosion.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14082320\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082320","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

碱活性材料(AAMs)因其低碳排放、优异的机械性能和出色的耐化学性而备受青睐。本文利用矿渣、钢渣和锂渣制备了三元碱活性胶凝材料,以研究其强度和抗硫酸盐侵蚀性。使用各种材料组合、碱活化剂组合、水粘合剂比率和暴露环境进行了一系列实验。这些实验采用了宏观和微观对比分析。使用 X 射线衍射 (XRD)、傅立叶变换红外光谱 (FTIR)、扫描电子显微镜 (SEM) 和能量色散光谱 (EDS) 分析了研磨粒化炉渣、锂渣和钢渣 (GLS) 三元 AAM 的水化反应产物、物相组成和微观结构。实验证明,GLS 三元 AAMs 具有优异的抗压强度和良好的抗硫酸钠侵蚀性,而抗硫酸镁侵蚀性随着时间的推移而降低。这项研究有助于提高人们对利用锂渣和钢渣的认识,并为碱活性胶凝材料及其抗硫酸盐侵蚀性领域提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compressive Strength and Resistance to Sulphate Attack of Ground Granulated Blast Furnace Slag, Lithium Slag, and Steel Slag Alkali-Activated Materials
Alkali-activated materials (AAMs) are favoured for their low carbon emissions, excellent mechanical properties, and excellent chemical resistance. In this paper, ternary alkali-activated cementitious materials were prepared from slag, steel slag, and lithium slag to investigate their strength and resistance to sulphate attack. A series of experiments were conducted using a variety of material combinations, alkali activator combinations, water–binder ratios, and exposure environments. These experiments employed both macro and micro comparative analyses. The hydration reaction products, physical phase composition, and microstructure of the ground granulated furnace slag, lithium slag, and steel slag (GLS) ternary AAMs were analysed using x-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). It was experimentally demonstrated that the GLS ternary AAMs had excellent compressive strength, good resistance to sodium sulphate erosion, and that resistance to magnesium sulphate erosion decreased with time. This study contributes to the advancement of knowledge regarding the utilisation of lithium slag and steel slag, and offers new insights into the field of alkali-activated cementitious materials and their resistance to sulphate erosion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Buildings
Buildings Multiple-
CiteScore
3.40
自引率
26.30%
发文量
1883
审稿时长
11 weeks
期刊介绍: BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates
期刊最新文献
Behavior of Lightweight Self-Compacting Concrete with Recycled Tire Steel Fibers Examination of the Release of Heavy Metals from Self-Hardening Slurries with Fly Ash from Municipal Sewage Sludge Incineration, Considering the Character of Its Operation in a Cut-Off Wall Evaluating the Impact of CO2 on Calcium SulphoAluminate (CSA) Concrete Exploring the Readiness of Organisations to Adopt Artificial Intelligence Impact of Night Ventilation on Indoor Thermal Environment of Residential Buildings under the Dual Carbon Target: A Case Study of Xi’an
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1