{"title":"不同 MOF 含量的多级多孔 MOF 复合材料的合成","authors":"Boou Li, Xiaojie Ma","doi":"10.54254/2755-2721/72/20240979","DOIUrl":null,"url":null,"abstract":"To address the inherent limitations of current MOF synthesis, where pore size is restricted to micropores or small mesopores, we successfully synthesized MOF composite materials with well-developed porous structures using a self-template approach. These pores encompass not only the intrinsic micropores or small mesopores of MOFs but also the template-induced large pores. During the experimental process, we achieved the synthesis of composite materials with varying MOF contents by modifying experimental conditions. Through this design, we not only achieved selective adsorption of guest molecules but also significantly increased the porosity, thereby enhancing the mass transfer efficiency of guest molecules and the utilization rate of materials. This research breakthrough offers new insights and solutions for addressing critical issues in fields such as gas separation, energy storage, and catalysis.","PeriodicalId":502253,"journal":{"name":"Applied and Computational Engineering","volume":"17 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The synthesis of multi-level porous MOF composite materials with different MOF contents\",\"authors\":\"Boou Li, Xiaojie Ma\",\"doi\":\"10.54254/2755-2721/72/20240979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the inherent limitations of current MOF synthesis, where pore size is restricted to micropores or small mesopores, we successfully synthesized MOF composite materials with well-developed porous structures using a self-template approach. These pores encompass not only the intrinsic micropores or small mesopores of MOFs but also the template-induced large pores. During the experimental process, we achieved the synthesis of composite materials with varying MOF contents by modifying experimental conditions. Through this design, we not only achieved selective adsorption of guest molecules but also significantly increased the porosity, thereby enhancing the mass transfer efficiency of guest molecules and the utilization rate of materials. This research breakthrough offers new insights and solutions for addressing critical issues in fields such as gas separation, energy storage, and catalysis.\",\"PeriodicalId\":502253,\"journal\":{\"name\":\"Applied and Computational Engineering\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54254/2755-2721/72/20240979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/72/20240979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The synthesis of multi-level porous MOF composite materials with different MOF contents
To address the inherent limitations of current MOF synthesis, where pore size is restricted to micropores or small mesopores, we successfully synthesized MOF composite materials with well-developed porous structures using a self-template approach. These pores encompass not only the intrinsic micropores or small mesopores of MOFs but also the template-induced large pores. During the experimental process, we achieved the synthesis of composite materials with varying MOF contents by modifying experimental conditions. Through this design, we not only achieved selective adsorption of guest molecules but also significantly increased the porosity, thereby enhancing the mass transfer efficiency of guest molecules and the utilization rate of materials. This research breakthrough offers new insights and solutions for addressing critical issues in fields such as gas separation, energy storage, and catalysis.