{"title":"膳食衍生肠道微生物代谢物的最新进展","authors":"Jeevan K. Prasain, Stephen Barnes","doi":"10.1002/efd2.181","DOIUrl":null,"url":null,"abstract":"<p>Emerging evidence indicates that the health-beneficial effects of ingested food components depend on in part, their upper and lower gastrointestinal uptake and metabolism and the gut microbial composition of the host. Several dietary components, such as polyphenols, are poorly absorbed in the upper intestinal compartments and extensively metabolized by the colonic microbiota resulting in the production of an array of metabolites. These microbiota-mediated products possess specific solubility, reactivity, bioavailability, and biological activities. However, identifying and characterizing a wide range of metabolites is challenging due to the high chemical diversity of dietary components and interindividual variability of the gut microbiota. It is, therefore, critical to design an animal model that effectively mimics human microbial metabolism and use multidisciplinary omics approaches such as metabolomics to detect and identify a wide range of metabolites. Here, we provide the current state of knowledge of major diet-derived gut microbial metabolites and their potential biological activities.</p>","PeriodicalId":11436,"journal":{"name":"eFood","volume":"5 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/efd2.181","citationCount":"0","resultStr":"{\"title\":\"Recent updates on diet-derived gut microbial metabolites\",\"authors\":\"Jeevan K. Prasain, Stephen Barnes\",\"doi\":\"10.1002/efd2.181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Emerging evidence indicates that the health-beneficial effects of ingested food components depend on in part, their upper and lower gastrointestinal uptake and metabolism and the gut microbial composition of the host. Several dietary components, such as polyphenols, are poorly absorbed in the upper intestinal compartments and extensively metabolized by the colonic microbiota resulting in the production of an array of metabolites. These microbiota-mediated products possess specific solubility, reactivity, bioavailability, and biological activities. However, identifying and characterizing a wide range of metabolites is challenging due to the high chemical diversity of dietary components and interindividual variability of the gut microbiota. It is, therefore, critical to design an animal model that effectively mimics human microbial metabolism and use multidisciplinary omics approaches such as metabolomics to detect and identify a wide range of metabolites. Here, we provide the current state of knowledge of major diet-derived gut microbial metabolites and their potential biological activities.</p>\",\"PeriodicalId\":11436,\"journal\":{\"name\":\"eFood\",\"volume\":\"5 4\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/efd2.181\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eFood\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/efd2.181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eFood","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/efd2.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Recent updates on diet-derived gut microbial metabolites
Emerging evidence indicates that the health-beneficial effects of ingested food components depend on in part, their upper and lower gastrointestinal uptake and metabolism and the gut microbial composition of the host. Several dietary components, such as polyphenols, are poorly absorbed in the upper intestinal compartments and extensively metabolized by the colonic microbiota resulting in the production of an array of metabolites. These microbiota-mediated products possess specific solubility, reactivity, bioavailability, and biological activities. However, identifying and characterizing a wide range of metabolites is challenging due to the high chemical diversity of dietary components and interindividual variability of the gut microbiota. It is, therefore, critical to design an animal model that effectively mimics human microbial metabolism and use multidisciplinary omics approaches such as metabolomics to detect and identify a wide range of metabolites. Here, we provide the current state of knowledge of major diet-derived gut microbial metabolites and their potential biological activities.
期刊介绍:
eFood is the official journal of the International Association of Dietetic Nutrition and Safety (IADNS) which eFood aims to cover all aspects of food science and technology. The journal’s mission is to advance and disseminate knowledge of food science, and to promote and foster research into the chemistry, nutrition and safety of food worldwide, by supporting open dissemination and lively discourse about a wide range of the most important topics in global food and health.
The Editors welcome original research articles, comprehensive reviews, mini review, highlights, news, short reports, perspectives and correspondences on both experimental work and policy management in relation to food chemistry, nutrition, food health and safety, etc. Research areas covered in the journal include, but are not limited to, the following:
● Food chemistry
● Nutrition
● Food safety
● Food and health
● Food technology and sustainability
● Food processing
● Sensory and consumer science
● Food microbiology
● Food toxicology
● Food packaging
● Food security
● Healthy foods
● Super foods
● Food science (general)