Fei Guo, Cheng Tang, Lei Shan, Le Huang, Chong Xiang
{"title":"偏心对往复密封性能影响的模拟研究","authors":"Fei Guo, Cheng Tang, Lei Shan, Le Huang, Chong Xiang","doi":"10.1177/13506501241266280","DOIUrl":null,"url":null,"abstract":"This article establishes a three-dimensional fluid-structure interaction (FSI) model for reciprocating rod seals. Based on this model, a novel method using a two-dimensional FSI model to solve the average sealing performance across multiple sections is proposed for the first time. This method allows for the dimensional reduction of solid mechanics, contact mechanics, and fluid mechanics analysis. The performance of the sealing system was calculated and analyzed under static eccentricity (which does not change with piston rod motion) and dynamic eccentricity (which changes with piston rod motion) using the aforementioned models. The results indicate that the sealing performance calculated by both models is highly consistent, demonstrating that, within the permissible engineering limits, the two-dimensional FSI model can replace the three-dimensional model, thereby reducing computational costs and improving convergence. Additionally, the results show that eccentricity increases the friction and leakage rates of the sealing system, with dynamic eccentricity having a greater impact on sealing performance than static eccentricity due to the viscoelasticity of the rubber.","PeriodicalId":509096,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"20 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation study on the effect of eccentricity on the performance of a reciprocating seal\",\"authors\":\"Fei Guo, Cheng Tang, Lei Shan, Le Huang, Chong Xiang\",\"doi\":\"10.1177/13506501241266280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article establishes a three-dimensional fluid-structure interaction (FSI) model for reciprocating rod seals. Based on this model, a novel method using a two-dimensional FSI model to solve the average sealing performance across multiple sections is proposed for the first time. This method allows for the dimensional reduction of solid mechanics, contact mechanics, and fluid mechanics analysis. The performance of the sealing system was calculated and analyzed under static eccentricity (which does not change with piston rod motion) and dynamic eccentricity (which changes with piston rod motion) using the aforementioned models. The results indicate that the sealing performance calculated by both models is highly consistent, demonstrating that, within the permissible engineering limits, the two-dimensional FSI model can replace the three-dimensional model, thereby reducing computational costs and improving convergence. Additionally, the results show that eccentricity increases the friction and leakage rates of the sealing system, with dynamic eccentricity having a greater impact on sealing performance than static eccentricity due to the viscoelasticity of the rubber.\",\"PeriodicalId\":509096,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"20 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501241266280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/13506501241266280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation study on the effect of eccentricity on the performance of a reciprocating seal
This article establishes a three-dimensional fluid-structure interaction (FSI) model for reciprocating rod seals. Based on this model, a novel method using a two-dimensional FSI model to solve the average sealing performance across multiple sections is proposed for the first time. This method allows for the dimensional reduction of solid mechanics, contact mechanics, and fluid mechanics analysis. The performance of the sealing system was calculated and analyzed under static eccentricity (which does not change with piston rod motion) and dynamic eccentricity (which changes with piston rod motion) using the aforementioned models. The results indicate that the sealing performance calculated by both models is highly consistent, demonstrating that, within the permissible engineering limits, the two-dimensional FSI model can replace the three-dimensional model, thereby reducing computational costs and improving convergence. Additionally, the results show that eccentricity increases the friction and leakage rates of the sealing system, with dynamic eccentricity having a greater impact on sealing performance than static eccentricity due to the viscoelasticity of the rubber.