{"title":"用纤维增强聚合物网格和工程水泥复合材料加固的钢筋混凝土梁的挠剪行为数值分析","authors":"Xiaoyang Guo, Zaiyu Zhang, Qing Sun, Peng Tian","doi":"10.3390/buildings14082304","DOIUrl":null,"url":null,"abstract":"Strengthening reinforced concrete (RC) beams with fiber-reinforced polymer (FRP) grids and engineered cement composites (ECCs) can significantly enhance their shear capacity. However, the specific contributions of the components in reinforced RC beams remain unclear, necessitating further investigation into the flexural shear performance of RC beams. The numerical model was used to analyze the flexural shear performance of RC beams strengthened with an FRP grid and ECCs. Subsequently, the parameters affecting the flexural shear performance of beams were discussed. This included the compressive strength of concrete prism, the shear span ratio, the tensile strength of ECCs, the thickness of the ECC cover, the cross-sectional area of the FRP grid, and the number of FRP grid layers. Finally, a calculation formula was established to predict the shear capacity and verified by the outcomes from numerical models and experimental data. The findings indicated that the ECC-strengthened layer significantly contributed to increasing the shear capacity. Additionally, the FRP grids helped to reduce stress concentration in the flexural shear zone, thereby preventing premature concrete cracking. The max load increased by 8.06% when the ECC’s tensile strength increased from 4 MPa to 10 MPa. In addition, increasing the cover thickness from 8 mm to 20 mm caused the peak load to increase by 14.42%. The calculation formula introduced in this research accurately predicts the shear capacity of the oblique section of RC beams.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis on Flexural Shear Behavior of Reinforced Concrete Beams Strengthened with Fiber-Reinforced Polymer Grid and Engineered Cement Composites\",\"authors\":\"Xiaoyang Guo, Zaiyu Zhang, Qing Sun, Peng Tian\",\"doi\":\"10.3390/buildings14082304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strengthening reinforced concrete (RC) beams with fiber-reinforced polymer (FRP) grids and engineered cement composites (ECCs) can significantly enhance their shear capacity. However, the specific contributions of the components in reinforced RC beams remain unclear, necessitating further investigation into the flexural shear performance of RC beams. The numerical model was used to analyze the flexural shear performance of RC beams strengthened with an FRP grid and ECCs. Subsequently, the parameters affecting the flexural shear performance of beams were discussed. This included the compressive strength of concrete prism, the shear span ratio, the tensile strength of ECCs, the thickness of the ECC cover, the cross-sectional area of the FRP grid, and the number of FRP grid layers. Finally, a calculation formula was established to predict the shear capacity and verified by the outcomes from numerical models and experimental data. The findings indicated that the ECC-strengthened layer significantly contributed to increasing the shear capacity. Additionally, the FRP grids helped to reduce stress concentration in the flexural shear zone, thereby preventing premature concrete cracking. The max load increased by 8.06% when the ECC’s tensile strength increased from 4 MPa to 10 MPa. In addition, increasing the cover thickness from 8 mm to 20 mm caused the peak load to increase by 14.42%. The calculation formula introduced in this research accurately predicts the shear capacity of the oblique section of RC beams.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14082304\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082304","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Numerical Analysis on Flexural Shear Behavior of Reinforced Concrete Beams Strengthened with Fiber-Reinforced Polymer Grid and Engineered Cement Composites
Strengthening reinforced concrete (RC) beams with fiber-reinforced polymer (FRP) grids and engineered cement composites (ECCs) can significantly enhance their shear capacity. However, the specific contributions of the components in reinforced RC beams remain unclear, necessitating further investigation into the flexural shear performance of RC beams. The numerical model was used to analyze the flexural shear performance of RC beams strengthened with an FRP grid and ECCs. Subsequently, the parameters affecting the flexural shear performance of beams were discussed. This included the compressive strength of concrete prism, the shear span ratio, the tensile strength of ECCs, the thickness of the ECC cover, the cross-sectional area of the FRP grid, and the number of FRP grid layers. Finally, a calculation formula was established to predict the shear capacity and verified by the outcomes from numerical models and experimental data. The findings indicated that the ECC-strengthened layer significantly contributed to increasing the shear capacity. Additionally, the FRP grids helped to reduce stress concentration in the flexural shear zone, thereby preventing premature concrete cracking. The max load increased by 8.06% when the ECC’s tensile strength increased from 4 MPa to 10 MPa. In addition, increasing the cover thickness from 8 mm to 20 mm caused the peak load to increase by 14.42%. The calculation formula introduced in this research accurately predicts the shear capacity of the oblique section of RC beams.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates