{"title":"CLARA+:针对半透明 SDM EON 的双机器学习优化资源分配","authors":"Shrinivas Petale;Suresh Subramaniam","doi":"10.1364/JOCN.527846","DOIUrl":null,"url":null,"abstract":"Space division multiplexed elastic optical networks (SDM-EONs) enhance service provisioning by offering increased fiber capacity through the use of flexible spectrum allocation, multiple spatial modes, and efficient modulations. In these networks, the problem of allocating resources for connections involves assigning routes, modulations, cores, and spectrum (RMCSA). However, the presence of intercore crosstalk (XT) between ongoing connections on adjacent cores can degrade signal transmission, necessitating proper handling during resource assignment. The use of multiple modulations in translucent optical networks presents a challenge in balancing spectrum utilization and XT accumulation. In this paper, we propose a dual-optimized RMCSA algorithm called the Capacity Loss Aware Resource Assignment Algorithm (CLARA+), which optimizes network capacity utilization to improve resource availability and network performance. A two-step machine-learning-enabled optimization is used to improve the resource allocations by balancing the tradeoff between spectrum utilization and XT accumulation with the help of feature extraction from the network. Extensive simulations demonstrate that CLARA+ significantly reduces bandwidth blocking probability and enhances resource utilization across various scenarios. We show that our strategy applied to a few algorithms from the literature improves the bandwidth blocking probability by up to three orders of magnitude. The algorithm effectively balances spectrum utilization and XT accumulation more efficiently compared to existing algorithms in the literature.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 10","pages":"F1-F12"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLARA+: dual machine learning optimized resource assignment for translucent SDM-EONs\",\"authors\":\"Shrinivas Petale;Suresh Subramaniam\",\"doi\":\"10.1364/JOCN.527846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space division multiplexed elastic optical networks (SDM-EONs) enhance service provisioning by offering increased fiber capacity through the use of flexible spectrum allocation, multiple spatial modes, and efficient modulations. In these networks, the problem of allocating resources for connections involves assigning routes, modulations, cores, and spectrum (RMCSA). However, the presence of intercore crosstalk (XT) between ongoing connections on adjacent cores can degrade signal transmission, necessitating proper handling during resource assignment. The use of multiple modulations in translucent optical networks presents a challenge in balancing spectrum utilization and XT accumulation. In this paper, we propose a dual-optimized RMCSA algorithm called the Capacity Loss Aware Resource Assignment Algorithm (CLARA+), which optimizes network capacity utilization to improve resource availability and network performance. A two-step machine-learning-enabled optimization is used to improve the resource allocations by balancing the tradeoff between spectrum utilization and XT accumulation with the help of feature extraction from the network. Extensive simulations demonstrate that CLARA+ significantly reduces bandwidth blocking probability and enhances resource utilization across various scenarios. We show that our strategy applied to a few algorithms from the literature improves the bandwidth blocking probability by up to three orders of magnitude. The algorithm effectively balances spectrum utilization and XT accumulation more efficiently compared to existing algorithms in the literature.\",\"PeriodicalId\":50103,\"journal\":{\"name\":\"Journal of Optical Communications and Networking\",\"volume\":\"16 10\",\"pages\":\"F1-F12\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669852/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10669852/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
CLARA+: dual machine learning optimized resource assignment for translucent SDM-EONs
Space division multiplexed elastic optical networks (SDM-EONs) enhance service provisioning by offering increased fiber capacity through the use of flexible spectrum allocation, multiple spatial modes, and efficient modulations. In these networks, the problem of allocating resources for connections involves assigning routes, modulations, cores, and spectrum (RMCSA). However, the presence of intercore crosstalk (XT) between ongoing connections on adjacent cores can degrade signal transmission, necessitating proper handling during resource assignment. The use of multiple modulations in translucent optical networks presents a challenge in balancing spectrum utilization and XT accumulation. In this paper, we propose a dual-optimized RMCSA algorithm called the Capacity Loss Aware Resource Assignment Algorithm (CLARA+), which optimizes network capacity utilization to improve resource availability and network performance. A two-step machine-learning-enabled optimization is used to improve the resource allocations by balancing the tradeoff between spectrum utilization and XT accumulation with the help of feature extraction from the network. Extensive simulations demonstrate that CLARA+ significantly reduces bandwidth blocking probability and enhances resource utilization across various scenarios. We show that our strategy applied to a few algorithms from the literature improves the bandwidth blocking probability by up to three orders of magnitude. The algorithm effectively balances spectrum utilization and XT accumulation more efficiently compared to existing algorithms in the literature.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.