关于各种机器学习模型在二元分类任务中预测股价走势性能的实证研究

Keqian Liu, Ang Li, Xinran Lin, Zhuobin Mao, Weiyang Zhang
{"title":"关于各种机器学习模型在二元分类任务中预测股价走势性能的实证研究","authors":"Keqian Liu, Ang Li, Xinran Lin, Zhuobin Mao, Weiyang Zhang","doi":"10.54254/2755-2721/55/20241403","DOIUrl":null,"url":null,"abstract":"This paper examines the accuracy of stock price rise-or-fall predictions of seven different machine learning algorithms, including support vector machines and random forests, for three industry types: securities, banks, and Internet companies. The purpose of the research is to explore the effects of different models in the stock market, so as to help people choose the optimal machine learning model in predicting different types of stocks. The study produced nine features based on the study by Patel et al for prediction. By collecting 9 types of stock data from companies in different industries, we performed necessary preprocessing on the data, fitted the model, tuned the parameters of the model and get the prediction result. Through the result, we found that the random forest algorithm has obvious advantages in binary classification prediction of stock prices. Linear discriminant analysis (LDA), Quadratic Discriminant Analysis (QDA) and logistic regression also have good fitting effects in this type of problem. K-Nearest Neighbor (KNN) and Naive Bayes algorithms exhibit poor prediction accuracy.","PeriodicalId":502253,"journal":{"name":"Applied and Computational Engineering","volume":"57 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical study on the performance of various machine learning models in predicting stock price movements as a binary classification task\",\"authors\":\"Keqian Liu, Ang Li, Xinran Lin, Zhuobin Mao, Weiyang Zhang\",\"doi\":\"10.54254/2755-2721/55/20241403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the accuracy of stock price rise-or-fall predictions of seven different machine learning algorithms, including support vector machines and random forests, for three industry types: securities, banks, and Internet companies. The purpose of the research is to explore the effects of different models in the stock market, so as to help people choose the optimal machine learning model in predicting different types of stocks. The study produced nine features based on the study by Patel et al for prediction. By collecting 9 types of stock data from companies in different industries, we performed necessary preprocessing on the data, fitted the model, tuned the parameters of the model and get the prediction result. Through the result, we found that the random forest algorithm has obvious advantages in binary classification prediction of stock prices. Linear discriminant analysis (LDA), Quadratic Discriminant Analysis (QDA) and logistic regression also have good fitting effects in this type of problem. K-Nearest Neighbor (KNN) and Naive Bayes algorithms exhibit poor prediction accuracy.\",\"PeriodicalId\":502253,\"journal\":{\"name\":\"Applied and Computational Engineering\",\"volume\":\"57 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54254/2755-2721/55/20241403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/55/20241403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对证券、银行和互联网公司三种行业类型,研究了支持向量机和随机森林等七种不同机器学习算法对股价涨跌预测的准确性。研究的目的是探索不同模型在股票市场中的效果,从而帮助人们在预测不同类型股票时选择最优的机器学习模型。该研究在帕特尔等人的研究基础上产生了九种预测特征。通过收集不同行业公司的 9 种股票数据,我们对数据进行了必要的预处理,拟合了模型,调整了模型参数,得到了预测结果。通过结果,我们发现随机森林算法在股票价格二元分类预测中具有明显的优势。线性判别分析(LDA)、二次判别分析(QDA)和逻辑回归对这类问题也有很好的拟合效果。K-Nearest Neighbor (KNN) 和 Naive Bayes 算法的预测准确率较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Empirical study on the performance of various machine learning models in predicting stock price movements as a binary classification task
This paper examines the accuracy of stock price rise-or-fall predictions of seven different machine learning algorithms, including support vector machines and random forests, for three industry types: securities, banks, and Internet companies. The purpose of the research is to explore the effects of different models in the stock market, so as to help people choose the optimal machine learning model in predicting different types of stocks. The study produced nine features based on the study by Patel et al for prediction. By collecting 9 types of stock data from companies in different industries, we performed necessary preprocessing on the data, fitted the model, tuned the parameters of the model and get the prediction result. Through the result, we found that the random forest algorithm has obvious advantages in binary classification prediction of stock prices. Linear discriminant analysis (LDA), Quadratic Discriminant Analysis (QDA) and logistic regression also have good fitting effects in this type of problem. K-Nearest Neighbor (KNN) and Naive Bayes algorithms exhibit poor prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on integrating hydrogen energy storage with solar and wind power for Net-Zero energy buildings Design and implementation of scrambling and decoding circuits Research on the life cycle assessment of cement Research on the intelligent fatigue detection of metal components in vehicles Research progress in home energy management systems consideration of comfort
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1