基于机器学习的皮层下神经成像在帕金森病诊断中的性别差异

IF 12.3 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied Computing and Informatics Pub Date : 2024-07-25 DOI:10.1108/aci-02-2024-0080
N. Islam, Ruqaiya Khanam
{"title":"基于机器学习的皮层下神经成像在帕金森病诊断中的性别差异","authors":"N. Islam, Ruqaiya Khanam","doi":"10.1108/aci-02-2024-0080","DOIUrl":null,"url":null,"abstract":"PurposeThis study evaluates machine learning (ML) classifiers for diagnosing Parkinson’s disease (PD) using subcortical brain region data from 3D T1 magnetic resonance imaging (MRI) Parkinson’s Progression Markers Initiative (PPMI database). We aim to identify top-performing algorithms and assess gender-related differences in accuracy.Design/methodology/approachMultiple ML algorithms will be compared for their ability to classify PD vs healthy controls using MRI scans of the brain structures like the putamen, thalamus, brainstem, accumbens, amygdala, caudate, hippocampus and pallidum. Analysis will include gender-specific performance comparisons.FindingsThe study reveals that ML classifier performance in diagnosing PD varies across subcortical brain regions and shows gender differences. The Extra Trees classifier performed best in men (86.36% accuracy in the putamen), while Naive Bayes performed best in women (69.23%, amygdala). Regions like the accumbens, hippocampus and caudate showed moderate accuracy (65–70%) in men and poor performance in women. The results point out a significant gender-based performance gap, highlighting the need for gender-specific models to improve diagnostic precision across complex brain structures.Originality/valueThis study highlights the significant impact of gender on machine learning diagnosis of PD using data from subcortical brain regions. Our novel focus on these regions uncovers their diagnostic potential, improves model accuracy and emphasizes the need for gender-specific approaches in medical AI. This work could ultimately lead to earlier PD detection and more personalized treatment.","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gender variability in machine learning based subcortical neuroimaging for Parkinson’s disease diagnosis\",\"authors\":\"N. Islam, Ruqaiya Khanam\",\"doi\":\"10.1108/aci-02-2024-0080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis study evaluates machine learning (ML) classifiers for diagnosing Parkinson’s disease (PD) using subcortical brain region data from 3D T1 magnetic resonance imaging (MRI) Parkinson’s Progression Markers Initiative (PPMI database). We aim to identify top-performing algorithms and assess gender-related differences in accuracy.Design/methodology/approachMultiple ML algorithms will be compared for their ability to classify PD vs healthy controls using MRI scans of the brain structures like the putamen, thalamus, brainstem, accumbens, amygdala, caudate, hippocampus and pallidum. Analysis will include gender-specific performance comparisons.FindingsThe study reveals that ML classifier performance in diagnosing PD varies across subcortical brain regions and shows gender differences. The Extra Trees classifier performed best in men (86.36% accuracy in the putamen), while Naive Bayes performed best in women (69.23%, amygdala). Regions like the accumbens, hippocampus and caudate showed moderate accuracy (65–70%) in men and poor performance in women. The results point out a significant gender-based performance gap, highlighting the need for gender-specific models to improve diagnostic precision across complex brain structures.Originality/valueThis study highlights the significant impact of gender on machine learning diagnosis of PD using data from subcortical brain regions. Our novel focus on these regions uncovers their diagnostic potential, improves model accuracy and emphasizes the need for gender-specific approaches in medical AI. This work could ultimately lead to earlier PD detection and more personalized treatment.\",\"PeriodicalId\":37348,\"journal\":{\"name\":\"Applied Computing and Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/aci-02-2024-0080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/aci-02-2024-0080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的本研究利用三维 T1 磁共振成像(MRI)帕金森病进展标志物倡议(PPMI 数据库)的皮层下脑区数据,评估机器学习(ML)分类器诊断帕金森病(PD)的能力。我们的目标是找出表现最佳的算法,并评估与性别相关的准确性差异。设计/方法/途径我们将使用对大脑结构(如普鲁士门、丘脑、脑干、延脑、杏仁核、尾状核、海马和苍白球)的 MRI 扫描,比较多种 ML 算法对帕金森病和健康对照组进行分类的能力。研究结果该研究显示,ML 分类器在诊断帕金森病方面的表现在皮层下脑区各不相同,并显示出性别差异。Extra Trees分类器在男性中表现最佳(在普鲁士门的准确率为86.36%),而Naive Bayes分类器在女性中表现最佳(在杏仁核的准确率为69.23%)。男性在延脑、海马和尾状核等区域的准确率为中等(65-70%),而女性的准确率较低。研究结果表明,在复杂的大脑结构中,存在明显的性别差异,因此需要建立针对不同性别的模型来提高诊断的准确性。我们对这些区域的新颖关注发掘了它们的诊断潜力,提高了模型的准确性,并强调了医学人工智能中性别特定方法的必要性。这项工作最终将有助于更早地发现帕金森病并提供更个性化的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gender variability in machine learning based subcortical neuroimaging for Parkinson’s disease diagnosis
PurposeThis study evaluates machine learning (ML) classifiers for diagnosing Parkinson’s disease (PD) using subcortical brain region data from 3D T1 magnetic resonance imaging (MRI) Parkinson’s Progression Markers Initiative (PPMI database). We aim to identify top-performing algorithms and assess gender-related differences in accuracy.Design/methodology/approachMultiple ML algorithms will be compared for their ability to classify PD vs healthy controls using MRI scans of the brain structures like the putamen, thalamus, brainstem, accumbens, amygdala, caudate, hippocampus and pallidum. Analysis will include gender-specific performance comparisons.FindingsThe study reveals that ML classifier performance in diagnosing PD varies across subcortical brain regions and shows gender differences. The Extra Trees classifier performed best in men (86.36% accuracy in the putamen), while Naive Bayes performed best in women (69.23%, amygdala). Regions like the accumbens, hippocampus and caudate showed moderate accuracy (65–70%) in men and poor performance in women. The results point out a significant gender-based performance gap, highlighting the need for gender-specific models to improve diagnostic precision across complex brain structures.Originality/valueThis study highlights the significant impact of gender on machine learning diagnosis of PD using data from subcortical brain regions. Our novel focus on these regions uncovers their diagnostic potential, improves model accuracy and emphasizes the need for gender-specific approaches in medical AI. This work could ultimately lead to earlier PD detection and more personalized treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Informatics
Applied Computing and Informatics Computer Science-Information Systems
CiteScore
12.20
自引率
0.00%
发文量
0
审稿时长
39 weeks
期刊介绍: Applied Computing and Informatics aims to be timely in disseminating leading-edge knowledge to researchers, practitioners and academics whose interest is in the latest developments in applied computing and information systems concepts, strategies, practices, tools and technologies. In particular, the journal encourages research studies that have significant contributions to make to the continuous development and improvement of IT practices in the Kingdom of Saudi Arabia and other countries. By doing so, the journal attempts to bridge the gap between the academic and industrial community, and therefore, welcomes theoretically grounded, methodologically sound research studies that address various IT-related problems and innovations of an applied nature. The journal will serve as a forum for practitioners, researchers, managers and IT policy makers to share their knowledge and experience in the design, development, implementation, management and evaluation of various IT applications. Contributions may deal with, but are not limited to: • Internet and E-Commerce Architecture, Infrastructure, Models, Deployment Strategies and Methodologies. • E-Business and E-Government Adoption. • Mobile Commerce and their Applications. • Applied Telecommunication Networks. • Software Engineering Approaches, Methodologies, Techniques, and Tools. • Applied Data Mining and Warehousing. • Information Strategic Planning and Recourse Management. • Applied Wireless Computing. • Enterprise Resource Planning Systems. • IT Education. • Societal, Cultural, and Ethical Issues of IT. • Policy, Legal and Global Issues of IT. • Enterprise Database Technology.
期刊最新文献
Gender variability in machine learning based subcortical neuroimaging for Parkinson’s disease diagnosis ChatGPT-powered deep learning: elevating brain tumor detection in MRI scans Bi-directional adaptive enhanced A* algorithm for mobile robot navigation Interca: an R library implementing “automatic” interpretation of results of multiple correspondence analysis (MCA) Wine quality assessment through lightweight deep learning: integrating 1D-CNN and LSTM for analyzing electronic nose VOCs signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1