Pub Date : 2025-01-06Epub Date: 2024-10-08DOI: 10.1084/jem.20241693
Montserrat Cols
Terez Shea-Donohue is the program director of the Division of Digestive Diseases and Nutrition at the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health. As a program director, Terez supports basic and translational research related to neurogastroenterology, gastrointestinal (GI), and GI epithelial barrier function. We spoke to Terez about the transition from active research to a predominantly administrative job, the need for life-long mentorship, and the continued sex/gender bias in health care.
{"title":"Terez Shea-Donohue: Optimism helps, and confidence in your work is critical.","authors":"Montserrat Cols","doi":"10.1084/jem.20241693","DOIUrl":"10.1084/jem.20241693","url":null,"abstract":"<p><p>Terez Shea-Donohue is the program director of the Division of Digestive Diseases and Nutrition at the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health. As a program director, Terez supports basic and translational research related to neurogastroenterology, gastrointestinal (GI), and GI epithelial barrier function. We spoke to Terez about the transition from active research to a predominantly administrative job, the need for life-long mentorship, and the continued sex/gender bias in health care.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":"222 1","pages":""},"PeriodicalIF":12.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06Epub Date: 2024-10-24DOI: 10.1084/jem.20232298
Lilou Germain, Pablo Veloso, Olivier Lantz, François Legoux
MAIT cells are innate-like T cells residing in barrier tissues such as the lung, skin, and intestine. Both the semi-invariant T cell receptor of MAIT cells and the restricting element MR1 are deeply conserved across mammals, indicating non-redundant functions linked to antigenic specificity. MAIT cells across species concomitantly express cytotoxicity and tissue-repair genes, suggesting versatile functions. Accordingly, MAIT cells contribute to antibacterial responses as well as to the repair of damaged barrier tissues. MAIT cells recognize riboflavin biosynthetic pathway-derived metabolites, which rapidly cross epithelial barriers to be presented by antigen-presenting cells. Changes in gut ecology during intestinal inflammation drive the expansion of strong riboflavin and MAIT ligand producers. Thus, MAIT cells may enable real-time surveillance of microbiota dysbiosis across intact epithelia and provide rapid and context-dependent responses. Here, we discuss recent findings regarding the origin and regulation of MAIT ligands and the role of MAIT cells in barrier tissues. We speculate on the potential reasons for MAIT cell conservation during evolution.
{"title":"MAIT cells: Conserved watchers on the wall.","authors":"Lilou Germain, Pablo Veloso, Olivier Lantz, François Legoux","doi":"10.1084/jem.20232298","DOIUrl":"10.1084/jem.20232298","url":null,"abstract":"<p><p>MAIT cells are innate-like T cells residing in barrier tissues such as the lung, skin, and intestine. Both the semi-invariant T cell receptor of MAIT cells and the restricting element MR1 are deeply conserved across mammals, indicating non-redundant functions linked to antigenic specificity. MAIT cells across species concomitantly express cytotoxicity and tissue-repair genes, suggesting versatile functions. Accordingly, MAIT cells contribute to antibacterial responses as well as to the repair of damaged barrier tissues. MAIT cells recognize riboflavin biosynthetic pathway-derived metabolites, which rapidly cross epithelial barriers to be presented by antigen-presenting cells. Changes in gut ecology during intestinal inflammation drive the expansion of strong riboflavin and MAIT ligand producers. Thus, MAIT cells may enable real-time surveillance of microbiota dysbiosis across intact epithelia and provide rapid and context-dependent responses. Here, we discuss recent findings regarding the origin and regulation of MAIT ligands and the role of MAIT cells in barrier tissues. We speculate on the potential reasons for MAIT cell conservation during evolution.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":"222 1","pages":""},"PeriodicalIF":12.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514058/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02Epub Date: 2024-09-19DOI: 10.1084/jem.20240103
Martijn J Schuijs, Claudia M Brenis Gomez, Fabian Bick, Justine Van Moorleghem, Manon Vanheerswynghels, Geert van Loo, Rudi Beyaert, David Voehringer, Richard M Locksley, Hamida Hammad, Bart N Lambrecht
Asthma is characterized by lung eosinophilia, remodeling, and mucus plugging, controlled by adaptive Th2 effector cells secreting IL-4, IL-5, and IL-13. Inhaled house dust mite (HDM) causes the release of barrier epithelial cytokines that activate various innate immune cells like DCs and basophils that can promote Th2 adaptive immunity directly or indirectly. Here, we show that basophils play a crucial role in the development of type 2 immunity and eosinophilic inflammation, mucus production, and bronchial hyperreactivity in response to HDM inhalation in C57Bl/6 mice. Interestingly, conditional depletion of basophils during sensitization did not reduce Th2 priming or asthma inception, whereas depletion during allergen challenge did. During the challenge of sensitized mice, basophil-intrinsic IL-33/ST2 signaling, and not FcεRI engagement, promoted basophil IL-4 production and subsequent Th2 cell recruitment to the lungs via vascular integrin expression. Basophil-intrinsic loss of the ubiquitin modifying molecule Tnfaip3, involved in dampening IL-33 signaling, enhanced key asthma features. Thus, IL-33-activated basophils are gatekeepers that boost allergic airway inflammation by controlling Th2 tissue entry.
{"title":"Interleukin-33-activated basophils promote asthma by regulating Th2 cell entry into lung tissue.","authors":"Martijn J Schuijs, Claudia M Brenis Gomez, Fabian Bick, Justine Van Moorleghem, Manon Vanheerswynghels, Geert van Loo, Rudi Beyaert, David Voehringer, Richard M Locksley, Hamida Hammad, Bart N Lambrecht","doi":"10.1084/jem.20240103","DOIUrl":"10.1084/jem.20240103","url":null,"abstract":"<p><p>Asthma is characterized by lung eosinophilia, remodeling, and mucus plugging, controlled by adaptive Th2 effector cells secreting IL-4, IL-5, and IL-13. Inhaled house dust mite (HDM) causes the release of barrier epithelial cytokines that activate various innate immune cells like DCs and basophils that can promote Th2 adaptive immunity directly or indirectly. Here, we show that basophils play a crucial role in the development of type 2 immunity and eosinophilic inflammation, mucus production, and bronchial hyperreactivity in response to HDM inhalation in C57Bl/6 mice. Interestingly, conditional depletion of basophils during sensitization did not reduce Th2 priming or asthma inception, whereas depletion during allergen challenge did. During the challenge of sensitized mice, basophil-intrinsic IL-33/ST2 signaling, and not FcεRI engagement, promoted basophil IL-4 production and subsequent Th2 cell recruitment to the lungs via vascular integrin expression. Basophil-intrinsic loss of the ubiquitin modifying molecule Tnfaip3, involved in dampening IL-33 signaling, enhanced key asthma features. Thus, IL-33-activated basophils are gatekeepers that boost allergic airway inflammation by controlling Th2 tissue entry.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":"221 12","pages":""},"PeriodicalIF":12.6,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02Epub Date: 2024-10-29DOI: 10.1084/jem.20240797
Hexin Shi, Dawson Medler, Jianhui Wang, Rachel Browning, Aijie Liu, Sara Schneider, Claudia Duran Bojorquez, Ashwani Kumar, Xiaohong Li, Jiexia Quan, Sara Ludwig, James J Moresco, Chao Xing, Eva Marie Y Moresco, Bruce Beutler
Immune checkpoint inhibitors interfere with T cell exhaustion but often fail to cure or control cancer long-term in patients. Using a genetic screen in C57BL/6J mice, we discovered a mutation in host H2-Aa that caused strong immune-mediated resistance to mouse melanomas. H2-Aa encodes an MHC class II α chain, and its absence in C57BL/6J mice eliminates all MHC-II expression. H2-Aa deficiency, specifically in dendritic cells (DC), led to a quantitative increase in type 2 conventional DC (cDC2) and a decrease in cDC1. H2-Aa-deficient cDC2, but not cDC1, were essential for melanoma suppression and effectively cross-primed and recruited CD8 T cells into tumors. Lack of T regulatory cells, also observed in H2-Aa deficiency, contributed to melanoma suppression. Acute disruption of H2-Aa was therapeutic in melanoma-bearing mice, particularly when combined with checkpoint inhibition, which had no therapeutic effect by itself. Our findings suggest that inhibiting MHC-II may be an effective immunotherapeutic approach to enhance immune responses to cancer.
{"title":"Suppression of melanoma by mice lacking MHC-II: Mechanisms and implications for cancer immunotherapy.","authors":"Hexin Shi, Dawson Medler, Jianhui Wang, Rachel Browning, Aijie Liu, Sara Schneider, Claudia Duran Bojorquez, Ashwani Kumar, Xiaohong Li, Jiexia Quan, Sara Ludwig, James J Moresco, Chao Xing, Eva Marie Y Moresco, Bruce Beutler","doi":"10.1084/jem.20240797","DOIUrl":"10.1084/jem.20240797","url":null,"abstract":"<p><p>Immune checkpoint inhibitors interfere with T cell exhaustion but often fail to cure or control cancer long-term in patients. Using a genetic screen in C57BL/6J mice, we discovered a mutation in host H2-Aa that caused strong immune-mediated resistance to mouse melanomas. H2-Aa encodes an MHC class II α chain, and its absence in C57BL/6J mice eliminates all MHC-II expression. H2-Aa deficiency, specifically in dendritic cells (DC), led to a quantitative increase in type 2 conventional DC (cDC2) and a decrease in cDC1. H2-Aa-deficient cDC2, but not cDC1, were essential for melanoma suppression and effectively cross-primed and recruited CD8 T cells into tumors. Lack of T regulatory cells, also observed in H2-Aa deficiency, contributed to melanoma suppression. Acute disruption of H2-Aa was therapeutic in melanoma-bearing mice, particularly when combined with checkpoint inhibition, which had no therapeutic effect by itself. Our findings suggest that inhibiting MHC-II may be an effective immunotherapeutic approach to enhance immune responses to cancer.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":"221 12","pages":""},"PeriodicalIF":12.6,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528124/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02Epub Date: 2024-11-01DOI: 10.1084/jem.20240942
Adrian Gervais, Paul Bastard, Lucy Bizien, Céline Delifer, Pierre Tiberghien, Chaturaka Rodrigo, Francesca Trespidi, Micol Angelini, Giada Rossini, Tiziana Lazzarotto, Francesca Conti, Irene Cassaniti, Fausto Baldanti, Francesca Rovida, Alessandro Ferrari, Davide Mileto, Alessandro Mancon, Laurent Abel, Anne Puel, Aurélie Cobat, Charles M Rice, Dániel Cadar, Jonas Schmidt-Chanasit, Johannes F Scheid, Jacob E Lemieux, Eric S Rosenberg, Marianna Agudelo, Stuart G Tangye, Alessandro Borghesi, Guillaume André Durand, Emilie Duburcq-Gury, Braulio M Valencia, Andrew R Lloyd, Anna Nagy, Margaret M MacDonald, Yannick Simonin, Shen-Ying Zhang, Jean-Laurent Casanova
Arboviral diseases are a growing global health concern. Pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) can underlie encephalitis due to West Nile virus (WNV) (∼40% of patients) and tick-borne encephalitis (TBE, due to TBE virus [TBEV]) (∼10%). We report here that these auto-Abs can also underlie severe forms of rarer arboviral infections. Auto-Abs neutralizing high concentrations of IFN-α2, IFN-β, and/or IFN-ω are present in the single case of severe Powassan virus (POWV) encephalitis studied, two of three cases of severe Usutu virus (USUV) infection studied, and the most severe of 24 cases of Ross River virus (RRV) disease studied. These auto-Abs are not found in any of the 137 individuals with silent or mild infections with these three viruses. Thus, auto-Abs neutralizing type I IFNs underlie an increasing list of severe arboviral diseases due to Flaviviridae (WNV, TBEV, POWV, USUV) or Togaviridae (RRV) viruses transmitted to humans by mosquitos (WNV, USUV, RRV) or ticks (TBEV, POWV).
虫媒病毒疾病是全球日益关注的健康问题。中和 I 型干扰素(IFNs)的原有自身抗体(auto-Abs)可能是西尼罗河病毒(WNV)脑炎(40% 的患者)和蜱传脑炎(TBE,由 TBE 病毒 [TBEV] 引起)(10%)的病因。我们在此报告,这些自身抗体也可能是较罕见的虫媒病毒感染的严重形式的基础。高浓度 IFN-α2、IFN-β 和/或 IFN-ω 中和的自身抗体存在于所研究的一例严重的波瓦桑病毒(POWV)脑炎病例、所研究的三例严重的乌苏图病毒(USUV)感染病例中的两例,以及所研究的 24 例罗斯河病毒(RRV)病例中最严重的一例。在这三种病毒的 137 例静默或轻度感染者中,没有发现这些自身抗体。因此,越来越多的严重虫媒病毒疾病是由蚊子(WNV、TBEV、POWV、USUV)或蜱虫(TBEV、POWV)传播给人类的黄病毒科(WNV)或托加病毒科(RRV)病毒引起的,这些自身抗体中和了 I 型 IFNs。
{"title":"Auto-Abs neutralizing type I IFNs in patients with severe Powassan, Usutu, or Ross River virus disease.","authors":"Adrian Gervais, Paul Bastard, Lucy Bizien, Céline Delifer, Pierre Tiberghien, Chaturaka Rodrigo, Francesca Trespidi, Micol Angelini, Giada Rossini, Tiziana Lazzarotto, Francesca Conti, Irene Cassaniti, Fausto Baldanti, Francesca Rovida, Alessandro Ferrari, Davide Mileto, Alessandro Mancon, Laurent Abel, Anne Puel, Aurélie Cobat, Charles M Rice, Dániel Cadar, Jonas Schmidt-Chanasit, Johannes F Scheid, Jacob E Lemieux, Eric S Rosenberg, Marianna Agudelo, Stuart G Tangye, Alessandro Borghesi, Guillaume André Durand, Emilie Duburcq-Gury, Braulio M Valencia, Andrew R Lloyd, Anna Nagy, Margaret M MacDonald, Yannick Simonin, Shen-Ying Zhang, Jean-Laurent Casanova","doi":"10.1084/jem.20240942","DOIUrl":"10.1084/jem.20240942","url":null,"abstract":"<p><p>Arboviral diseases are a growing global health concern. Pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) can underlie encephalitis due to West Nile virus (WNV) (∼40% of patients) and tick-borne encephalitis (TBE, due to TBE virus [TBEV]) (∼10%). We report here that these auto-Abs can also underlie severe forms of rarer arboviral infections. Auto-Abs neutralizing high concentrations of IFN-α2, IFN-β, and/or IFN-ω are present in the single case of severe Powassan virus (POWV) encephalitis studied, two of three cases of severe Usutu virus (USUV) infection studied, and the most severe of 24 cases of Ross River virus (RRV) disease studied. These auto-Abs are not found in any of the 137 individuals with silent or mild infections with these three viruses. Thus, auto-Abs neutralizing type I IFNs underlie an increasing list of severe arboviral diseases due to Flaviviridae (WNV, TBEV, POWV, USUV) or Togaviridae (RRV) viruses transmitted to humans by mosquitos (WNV, USUV, RRV) or ticks (TBEV, POWV).</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":"221 12","pages":""},"PeriodicalIF":12.6,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02Epub Date: 2024-10-25DOI: 10.1084/jem.20241663
Régis Joulia, Clare M Lloyd
In this issue of JEM, Schuijs et al. (https://doi.org/10.1084/jem.20240103) highlight a novel role for basophils during allergic immune responses to house dust mites (HDM). They reveal that interleukin-33 (IL-33)-activated basophils facilitate the recruitment and extravasation of Th2 cells into the lungs during a specific time frame via their interactions with pulmonary endothelial cells.
{"title":"Basophils: Regulators of lung inflammation over space and time.","authors":"Régis Joulia, Clare M Lloyd","doi":"10.1084/jem.20241663","DOIUrl":"10.1084/jem.20241663","url":null,"abstract":"<p><p>In this issue of JEM, Schuijs et al. (https://doi.org/10.1084/jem.20240103) highlight a novel role for basophils during allergic immune responses to house dust mites (HDM). They reveal that interleukin-33 (IL-33)-activated basophils facilitate the recruitment and extravasation of Th2 cells into the lungs during a specific time frame via their interactions with pulmonary endothelial cells.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":"221 12","pages":""},"PeriodicalIF":12.6,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1158/0008-5472.CAN-23-3887
John Heath, Caitlynn Mirabelli, Matthew G Annis, Valerie Sabourin, Steven Hebert, Steven Findlay, HaEun Kim, Michael Witcher, Claudia L Kleinman, Peter M Siegel, Alexandre Orthwein, Josie Ursini-Siegel
The pogo transposable element-derived zinc finger protein, POGZ, is notably associated with neurodevelopmental disorders through its role in gene transcription. Many proteins involved in neurological development are often dysregulated in cancer, suggesting a potential role for POGZ in tumor biology. Here, we provided experimental evidence that POGZ influences the growth and metastatic spread of triple-negative breast cancers (TNBC). In well-characterized models of TNBC, POGZ exerted a dual role, both as a tumor promoter and metastasis suppressor. Mechanistically, loss of POGZ potentiated TGFβ pathway activation to exert cytostatic effects while simultaneously increasing the mesenchymal and migratory properties of breast tumors. Although POGZ levels are elevated in human breast cancers, the most aggressive forms of TNBC tumors, including those with increased mesenchymal and metastatic properties, exhibit dampened POGZ levels, and low POGZ expression was associated with inferior clinical outcomes in these tumor types. Taken together, these data suggest that POGZ is a critical suppressor of the early stages of the metastatic cascade. Significance: The POGZ neurodevelopmental protein plays dual functions in triple-negative breast cancers as a tumor promoter and metastasis suppressor, inhibiting TGFβ-regulated EMT to limit breast cancer metastatic progression.
{"title":"The Neurodevelopmental Protein POGZ Suppresses Metastasis in Triple-Negative Breast Cancer by Attenuating TGFβ Signaling.","authors":"John Heath, Caitlynn Mirabelli, Matthew G Annis, Valerie Sabourin, Steven Hebert, Steven Findlay, HaEun Kim, Michael Witcher, Claudia L Kleinman, Peter M Siegel, Alexandre Orthwein, Josie Ursini-Siegel","doi":"10.1158/0008-5472.CAN-23-3887","DOIUrl":"10.1158/0008-5472.CAN-23-3887","url":null,"abstract":"<p><p>The pogo transposable element-derived zinc finger protein, POGZ, is notably associated with neurodevelopmental disorders through its role in gene transcription. Many proteins involved in neurological development are often dysregulated in cancer, suggesting a potential role for POGZ in tumor biology. Here, we provided experimental evidence that POGZ influences the growth and metastatic spread of triple-negative breast cancers (TNBC). In well-characterized models of TNBC, POGZ exerted a dual role, both as a tumor promoter and metastasis suppressor. Mechanistically, loss of POGZ potentiated TGFβ pathway activation to exert cytostatic effects while simultaneously increasing the mesenchymal and migratory properties of breast tumors. Although POGZ levels are elevated in human breast cancers, the most aggressive forms of TNBC tumors, including those with increased mesenchymal and metastatic properties, exhibit dampened POGZ levels, and low POGZ expression was associated with inferior clinical outcomes in these tumor types. Taken together, these data suggest that POGZ is a critical suppressor of the early stages of the metastatic cascade. Significance: The POGZ neurodevelopmental protein plays dual functions in triple-negative breast cancers as a tumor promoter and metastasis suppressor, inhibiting TGFβ-regulated EMT to limit breast cancer metastatic progression.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":" ","pages":"3743-3760"},"PeriodicalIF":2.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prostate cancer rarely responds to immune-checkpoint blockade (ICB) therapies. Cancer-associated fibroblasts (CAF) are critical components of the immunologically "cold" tumor microenvironment and are considered a promising target to enhance the immunotherapy response. In this study, we aimed to reveal the mechanisms regulating CAF plasticity to identify potential strategies to switch CAFs from protumorigenic to antitumor phenotypes and to enhance ICB efficacy in prostate cancer. Integration of four prostate cancer single-cell RNA sequencing datasets defined protumorigenic and antitumor CAFs, and RNA-seq, flow cytometry, and a prostate cancer organoid model demonstrated the functions of two CAF subtypes. Extracellular matrix-associated CAFs (ECM-CAF) promoted collagen deposition and cancer cell progression, and lymphocyte-associated CAFs (Lym-CAF) exhibited an antitumor phenotype and induced the infiltration and activation of CD8+ T cells. YAP1 activity regulated the ECM-CAF phenotype, and YAP1 silencing promoted switching to Lym-CAFs. NF-κB p65 was the core transcription factor in the Lym-CAF subset, and YAP1 inhibited nuclear translocation of p65. Selective depletion of YAP1 in ECM-CAFs in vivo promoted CD8+ T-cell infiltration and activation and enhanced the therapeutic effects of anti-PD-1 treatment on prostate cancer. Overall, this study revealed a mechanism regulating CAF identity in prostate cancer and highlighted a therapeutic strategy for altering the CAF subtype to suppress tumor growth and increase sensitivity to ICB. Significance: YAP1 regulates cancer-associated fibroblast phenotypes and can be targeted to switch cancer-associated fibroblasts from a protumorigenic subtype that promotes extracellular matrix deposition to a tumor-suppressive subtype that stimulates antitumor immunity and immunotherapy efficacy.
{"title":"YAP1 Inhibition Induces Phenotype Switching of Cancer-Associated Fibroblasts to Tumor Suppressive in Prostate Cancer.","authors":"Hongtao Song, Tong Lu, Donghui Han, Jiayu Zhang, Lunbiao Gan, Chao Xu, Shaojie Liu, Peng Li, Keying Zhang, Zhihao Hu, Hongji Li, Yu Li, Xiaolong Zhao, Jingliang Zhang, Nianzeng Xing, Changhong Shi, Weihong Wen, Fa Yang, Weijun Qin","doi":"10.1158/0008-5472.CAN-24-0932","DOIUrl":"10.1158/0008-5472.CAN-24-0932","url":null,"abstract":"<p><p>Prostate cancer rarely responds to immune-checkpoint blockade (ICB) therapies. Cancer-associated fibroblasts (CAF) are critical components of the immunologically \"cold\" tumor microenvironment and are considered a promising target to enhance the immunotherapy response. In this study, we aimed to reveal the mechanisms regulating CAF plasticity to identify potential strategies to switch CAFs from protumorigenic to antitumor phenotypes and to enhance ICB efficacy in prostate cancer. Integration of four prostate cancer single-cell RNA sequencing datasets defined protumorigenic and antitumor CAFs, and RNA-seq, flow cytometry, and a prostate cancer organoid model demonstrated the functions of two CAF subtypes. Extracellular matrix-associated CAFs (ECM-CAF) promoted collagen deposition and cancer cell progression, and lymphocyte-associated CAFs (Lym-CAF) exhibited an antitumor phenotype and induced the infiltration and activation of CD8+ T cells. YAP1 activity regulated the ECM-CAF phenotype, and YAP1 silencing promoted switching to Lym-CAFs. NF-κB p65 was the core transcription factor in the Lym-CAF subset, and YAP1 inhibited nuclear translocation of p65. Selective depletion of YAP1 in ECM-CAFs in vivo promoted CD8+ T-cell infiltration and activation and enhanced the therapeutic effects of anti-PD-1 treatment on prostate cancer. Overall, this study revealed a mechanism regulating CAF identity in prostate cancer and highlighted a therapeutic strategy for altering the CAF subtype to suppress tumor growth and increase sensitivity to ICB. Significance: YAP1 regulates cancer-associated fibroblast phenotypes and can be targeted to switch cancer-associated fibroblasts from a protumorigenic subtype that promotes extracellular matrix deposition to a tumor-suppressive subtype that stimulates antitumor immunity and immunotherapy efficacy.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":" ","pages":"3728-3742"},"PeriodicalIF":2.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1158/0008-5472.CAN-24-0088
Yani Pan, Yue Zhou, Yonghua Shen, Lei Xu, Hongwen Liu, Nannan Zhang, Tianlu Huang, Kui Meng, Yu Liu, Lishan Wang, Ge Bai, Qi Chen, Yun Zhu, Xiaoping Zou, Siliang Wang, Zhangding Wang, Lei Wang
Cholangiocarcinoma (CCA) displays enhanced glycolysis, pivotal for fulfilling the heightened energy demands intrinsic to its malignant progression. Recent research has indicated that endogenous glycogen rather than exogenous glucose acts as the major carbon source for glycolysis, highlighting the need to better understand the regulation of glycogen homeostasis in CCA. Here, through comprehensive integrative analysis, we identified that glycogen phosphorylase brain form (PYGB), the main enzyme involved in glycogen homeostasis, was markedly upregulated in CCA tissues, serving as an independent prognostic indicator for human patients with CCA. Moreover, elevated PYGB expression potentiated cholangiocarcinogenesis and augmented CCA cell proliferation in both organoid and xenograft models. Hypoxia stimulated PYGB activity in a phosphoglycerate kinase 1-dependent manner, leading to glycogenolysis and the subsequent release of glucose-6-phosphate (G6P) and thereby facilitating aerobic glycolysis. Notably, a virtual screening pinpointed the β-blocker carvedilol as a potent pharmacologic inhibitor of PYGB that could attenuate CCA progression. Collectively, these findings position PYGB as a promising prognostic biomarker and therapeutic target for CCA. Significance: Cholangiocarcinoma cells exhibit high glycogen phosphorylase activity under hypoxic conditions that mediates metabolic reprograming to promote glycolysis and support tumor development.
胆管癌(CCA)的糖酵解作用增强,这对满足其恶性发展过程中固有的高能量需求至关重要。最近的研究表明,糖酵解的主要碳源是内源性糖原,而不是外源性葡萄糖,这凸显了更好地了解 CCA 中糖原平衡调控的必要性。在这里,我们通过全面的综合分析发现,糖原磷酸化酶脑型(PYGB)是参与糖原平衡的主要酶,在CCA组织中明显上调,是人类CCA患者的一个独立预后指标。此外,在类器官模型和异种移植模型中,PYGB表达的升高可促进胆管癌的发生并增强CCA细胞的增殖。缺氧以磷酸甘油酸激酶1(PGK1)依赖的方式刺激PYGB活性,导致糖原分解和随后的葡萄糖-6-磷酸(G6P)释放,从而促进有氧糖酵解。值得注意的是,一项虚拟筛选发现,β-受体阻滞剂卡维地洛(carveilol)是PYGB的强效药理抑制剂,可减轻CCA的进展。总之,这些发现将PYGB定位为一种有希望的CCA预后生物标志物和治疗靶点。
{"title":"Hypoxia Stimulates PYGB Enzymatic Activity to Promote Glycogen Metabolism and Cholangiocarcinoma Progression.","authors":"Yani Pan, Yue Zhou, Yonghua Shen, Lei Xu, Hongwen Liu, Nannan Zhang, Tianlu Huang, Kui Meng, Yu Liu, Lishan Wang, Ge Bai, Qi Chen, Yun Zhu, Xiaoping Zou, Siliang Wang, Zhangding Wang, Lei Wang","doi":"10.1158/0008-5472.CAN-24-0088","DOIUrl":"10.1158/0008-5472.CAN-24-0088","url":null,"abstract":"<p><p>Cholangiocarcinoma (CCA) displays enhanced glycolysis, pivotal for fulfilling the heightened energy demands intrinsic to its malignant progression. Recent research has indicated that endogenous glycogen rather than exogenous glucose acts as the major carbon source for glycolysis, highlighting the need to better understand the regulation of glycogen homeostasis in CCA. Here, through comprehensive integrative analysis, we identified that glycogen phosphorylase brain form (PYGB), the main enzyme involved in glycogen homeostasis, was markedly upregulated in CCA tissues, serving as an independent prognostic indicator for human patients with CCA. Moreover, elevated PYGB expression potentiated cholangiocarcinogenesis and augmented CCA cell proliferation in both organoid and xenograft models. Hypoxia stimulated PYGB activity in a phosphoglycerate kinase 1-dependent manner, leading to glycogenolysis and the subsequent release of glucose-6-phosphate (G6P) and thereby facilitating aerobic glycolysis. Notably, a virtual screening pinpointed the β-blocker carvedilol as a potent pharmacologic inhibitor of PYGB that could attenuate CCA progression. Collectively, these findings position PYGB as a promising prognostic biomarker and therapeutic target for CCA. Significance: Cholangiocarcinoma cells exhibit high glycogen phosphorylase activity under hypoxic conditions that mediates metabolic reprograming to promote glycolysis and support tumor development.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":" ","pages":"3803-3817"},"PeriodicalIF":12.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Targeting multiple signaling pathways has been proposed as a strategy to overcome resistance to single-pathway inhibition in cancer therapy. A previous study in epithelial ovarian cancers identified hyperactivity of spleen tyrosine kinase (SYK) and EGFR, which mutually phosphorylate and activate each other. Given the potential for pharmacologic inhibition of both kinases with clinically available agents, this study aimed to assess the antitumor efficacy of both pharmacologic and genetic SYK and EGFR coinhibition using a multifaceted approach. We assessed the coinactivation effects in chemoresistant ovarian cancer cell lines, patient-derived organoids, and xenograft models. Dual inhibition of SYK and EGFR in chemoresistant ovarian cancer cells elicited a synergistic antitumor effect. Notably, the combined inhibition activated the DNA damage response, induced G1 cell-cycle arrest, and promoted apoptosis. The phosphoproteomic analysis revealed that perturbation of SYK and EGFR signaling induced a significant reduction in both phosphorylated and total protein levels of cell division cycle 6, a crucial initiator of DNA replication. Together, this study provides preclinical evidence supporting dual inhibition of SYK and EGFR as a promising treatment for chemoresistant ovarian cancer by disrupting DNA synthesis and impairing formation of the prereplication complex. These findings warrant further clinical investigation to explore the potential of this combination therapy in overcoming drug resistance and improving patient outcomes. Significance: SYK and EGFR coinhibition exerts synergistic anticancer effects in chemoresistant ovarian cancer, providing a strategy to treat chemotherapy-resistant ovarian cancers using clinically available agents by targeting critical signaling pathways involved in DNA replication.
在癌症治疗中,靶向多种信号通路被认为是克服单通路抑制耐药性的一种策略。此前一项针对上皮性卵巢癌的研究发现,脾酪氨酸激酶(SYK)和表皮生长因子受体(EGFR)相互磷酸化和激活,从而导致脾酪氨酸激酶和表皮生长因子受体的活性亢进。鉴于临床上可用药物对这两种激酶进行药理抑制的可能性,本研究旨在评估药理和基因SYK与表皮生长因子受体联合抑制的抗肿瘤疗效,采用多方面的方法分析全球磷酸蛋白组和化疗耐药卵巢癌细胞系、患者衍生的器官组织和异种移植模型。在化疗耐药卵巢癌细胞中,SYK和表皮生长因子受体的双重抑制产生了高度协同的抗肿瘤效果。值得注意的是,联合抑制策略激活了DNA损伤反应,诱导了G1细胞周期停滞,并促进了细胞凋亡。磷酸化蛋白组分析表明,SYK和表皮生长因子受体信号转导的扰动诱导了细胞分裂周期6(CDC6)磷酸化蛋白水平和总蛋白水平的显著下降,而CDC6是DNA复制的关键启动子。总之,这项研究提供了临床前证据,支持将 SYK 和表皮生长因子受体的双重抑制作为治疗化疗耐药卵巢癌的一种有前途的方法,这种方法通过损害复制前复合物的形成来破坏 DNA 的合成。这些发现值得进一步临床研究,以探索这种联合疗法在克服耐药性和改善患者预后方面的潜力。
{"title":"Dual Inhibition of SYK and EGFR Overcomes Chemoresistance by Inhibiting CDC6 and Blocking DNA Replication.","authors":"Jayaprakash Mandal, Tiffany Nicole Jones, Juliane Marie Liberto, Stephanie Gaillard, Tian-Li Wang, Ie-Ming Shih","doi":"10.1158/0008-5472.CAN-24-0769","DOIUrl":"10.1158/0008-5472.CAN-24-0769","url":null,"abstract":"<p><p>Targeting multiple signaling pathways has been proposed as a strategy to overcome resistance to single-pathway inhibition in cancer therapy. A previous study in epithelial ovarian cancers identified hyperactivity of spleen tyrosine kinase (SYK) and EGFR, which mutually phosphorylate and activate each other. Given the potential for pharmacologic inhibition of both kinases with clinically available agents, this study aimed to assess the antitumor efficacy of both pharmacologic and genetic SYK and EGFR coinhibition using a multifaceted approach. We assessed the coinactivation effects in chemoresistant ovarian cancer cell lines, patient-derived organoids, and xenograft models. Dual inhibition of SYK and EGFR in chemoresistant ovarian cancer cells elicited a synergistic antitumor effect. Notably, the combined inhibition activated the DNA damage response, induced G1 cell-cycle arrest, and promoted apoptosis. The phosphoproteomic analysis revealed that perturbation of SYK and EGFR signaling induced a significant reduction in both phosphorylated and total protein levels of cell division cycle 6, a crucial initiator of DNA replication. Together, this study provides preclinical evidence supporting dual inhibition of SYK and EGFR as a promising treatment for chemoresistant ovarian cancer by disrupting DNA synthesis and impairing formation of the prereplication complex. These findings warrant further clinical investigation to explore the potential of this combination therapy in overcoming drug resistance and improving patient outcomes. Significance: SYK and EGFR coinhibition exerts synergistic anticancer effects in chemoresistant ovarian cancer, providing a strategy to treat chemotherapy-resistant ovarian cancers using clinically available agents by targeting critical signaling pathways involved in DNA replication.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":" ","pages":"3881-3893"},"PeriodicalIF":12.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}