{"title":"基于无源滑模控制策略的混合 ANPC 并网逆变器设计","authors":"Yifei Zhang, Kang Li, Li Zhang","doi":"10.3390/en17153655","DOIUrl":null,"url":null,"abstract":"Voltage source inverters are extensively used in the grid connection of renewable energy-sourced generators, and multilevel converters, in particular, have attracted a great deal of attention in recent years. This paper investigates the application of a novel passivity-based sliding mode (PSM) control scheme on three-level grid-tie active Neutral-Point-Clamped (ANPC) inverters that yield fast and stable responses to grid impedance variations. Simulation studies confirm that this control scheme can produce high tracking performance and is also robust against grid load variations. Furthermore, to enhance ANPC efficiency, the loss distribution of switching devices controlled by the proposed strategy is evaluated. An optimal scheme is finally proposed for allocating silicon and Wide-Band-Gap switching devices, resulting in a hybrid ANPC inverter capable of achieving a desirable trade-off between the power losses and the device cost.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid ANPC Grid-Tied Inverter Design with Passivity-Based Sliding Mode Control Strategy\",\"authors\":\"Yifei Zhang, Kang Li, Li Zhang\",\"doi\":\"10.3390/en17153655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voltage source inverters are extensively used in the grid connection of renewable energy-sourced generators, and multilevel converters, in particular, have attracted a great deal of attention in recent years. This paper investigates the application of a novel passivity-based sliding mode (PSM) control scheme on three-level grid-tie active Neutral-Point-Clamped (ANPC) inverters that yield fast and stable responses to grid impedance variations. Simulation studies confirm that this control scheme can produce high tracking performance and is also robust against grid load variations. Furthermore, to enhance ANPC efficiency, the loss distribution of switching devices controlled by the proposed strategy is evaluated. An optimal scheme is finally proposed for allocating silicon and Wide-Band-Gap switching devices, resulting in a hybrid ANPC inverter capable of achieving a desirable trade-off between the power losses and the device cost.\",\"PeriodicalId\":11557,\"journal\":{\"name\":\"Energies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/en17153655\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17153655","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Hybrid ANPC Grid-Tied Inverter Design with Passivity-Based Sliding Mode Control Strategy
Voltage source inverters are extensively used in the grid connection of renewable energy-sourced generators, and multilevel converters, in particular, have attracted a great deal of attention in recent years. This paper investigates the application of a novel passivity-based sliding mode (PSM) control scheme on three-level grid-tie active Neutral-Point-Clamped (ANPC) inverters that yield fast and stable responses to grid impedance variations. Simulation studies confirm that this control scheme can produce high tracking performance and is also robust against grid load variations. Furthermore, to enhance ANPC efficiency, the loss distribution of switching devices controlled by the proposed strategy is evaluated. An optimal scheme is finally proposed for allocating silicon and Wide-Band-Gap switching devices, resulting in a hybrid ANPC inverter capable of achieving a desirable trade-off between the power losses and the device cost.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.