同层外延氮化铝/氮化镓双势垒谐振隧穿二极管的高性能负差分电阻特性

Fang Liu, J. Xue, zumao li, guanlin wu, JiaJia Yao, jinyuan yuan, RenJie Liu, cheng zhao, wenbo sun, Kai Zhang, Jincheng Zhang, Yue Hao
{"title":"同层外延氮化铝/氮化镓双势垒谐振隧穿二极管的高性能负差分电阻特性","authors":"Fang Liu, J. Xue, zumao li, guanlin wu, JiaJia Yao, jinyuan yuan, RenJie Liu, cheng zhao, wenbo sun, Kai Zhang, Jincheng Zhang, Yue Hao","doi":"10.35848/1347-4065/ad679b","DOIUrl":null,"url":null,"abstract":"\n In this work, high-performance negative differential resistance (NDR) characteristics are demonstrated in homoepitaxial AlN/GaN double-barrier resonant tunneling diodes (RTDs). The devices are grown by plasma-assisted molecular beam epitaxy on bulk GaN substrates and exhibit robust and repeatable NDR at room-temperature. High peak current density of 183 kA/cm2 is simultaneously demonstrated with a large peak-to-valley current ratio of 2.07, mainly benefiting from the significantly reduced dislocation density and improved hyper-abrupt heterointerfaces in the active region, which boosts the electron quantum transport in the resonant tunneling cavity. The achievement shows the promising potential to enhance the oscillation frequency and output power of GaN-based RTD oscillator, an imperative for next generation high-power solid-state compact terahertz oscillators application.","PeriodicalId":505044,"journal":{"name":"Japanese Journal of Applied Physics","volume":"7 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance negative differential resistance characteristics in homoepitaxial AlN/GaN double-barrier resonant tunneling diodes\",\"authors\":\"Fang Liu, J. Xue, zumao li, guanlin wu, JiaJia Yao, jinyuan yuan, RenJie Liu, cheng zhao, wenbo sun, Kai Zhang, Jincheng Zhang, Yue Hao\",\"doi\":\"10.35848/1347-4065/ad679b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this work, high-performance negative differential resistance (NDR) characteristics are demonstrated in homoepitaxial AlN/GaN double-barrier resonant tunneling diodes (RTDs). The devices are grown by plasma-assisted molecular beam epitaxy on bulk GaN substrates and exhibit robust and repeatable NDR at room-temperature. High peak current density of 183 kA/cm2 is simultaneously demonstrated with a large peak-to-valley current ratio of 2.07, mainly benefiting from the significantly reduced dislocation density and improved hyper-abrupt heterointerfaces in the active region, which boosts the electron quantum transport in the resonant tunneling cavity. The achievement shows the promising potential to enhance the oscillation frequency and output power of GaN-based RTD oscillator, an imperative for next generation high-power solid-state compact terahertz oscillators application.\",\"PeriodicalId\":505044,\"journal\":{\"name\":\"Japanese Journal of Applied Physics\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35848/1347-4065/ad679b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad679b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,同层外延氮化铝/氮化镓双势垒谐振隧穿二极管(RTD)展示了高性能负差分电阻(NDR)特性。这些器件是通过等离子体辅助分子束外延技术在块状氮化镓衬底上生长出来的,在室温下表现出稳健且可重复的负差分电阻特性。该器件的峰值电流密度高达 183 kA/cm2,峰谷电流比高达 2.07,这主要得益于有源区中位错密度的显著降低和超破坏异质界面的改善,从而促进了共振隧穿腔中的电子量子传输。这一成果显示了提高基于氮化镓的热电阻振荡器的振荡频率和输出功率的巨大潜力,是下一代大功率固态紧凑型太赫兹振荡器应用的当务之急。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-performance negative differential resistance characteristics in homoepitaxial AlN/GaN double-barrier resonant tunneling diodes
In this work, high-performance negative differential resistance (NDR) characteristics are demonstrated in homoepitaxial AlN/GaN double-barrier resonant tunneling diodes (RTDs). The devices are grown by plasma-assisted molecular beam epitaxy on bulk GaN substrates and exhibit robust and repeatable NDR at room-temperature. High peak current density of 183 kA/cm2 is simultaneously demonstrated with a large peak-to-valley current ratio of 2.07, mainly benefiting from the significantly reduced dislocation density and improved hyper-abrupt heterointerfaces in the active region, which boosts the electron quantum transport in the resonant tunneling cavity. The achievement shows the promising potential to enhance the oscillation frequency and output power of GaN-based RTD oscillator, an imperative for next generation high-power solid-state compact terahertz oscillators application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scintillator application of CsPbBr3 quantum dots-embedded SiO2 glasses Influence of bias voltage on the Ar/CH2F2/O2 plasma etching of Si3N4 films Development of a Pb(Zr,Ti)O3 capacitor employing an IrOx/Ir bottom electrode for highly reliable ferroelectric random access memories Monomer diffusion tendencies in complex-shaped materials by vapor deposition polymerization High-performance negative differential resistance characteristics in homoepitaxial AlN/GaN double-barrier resonant tunneling diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1