{"title":"十字形钢筋 RPC 柱的抗震性能研究","authors":"Jingmin Wang, Zhiyu Zhu, Kun Wang","doi":"10.3390/buildings14082310","DOIUrl":null,"url":null,"abstract":"Based on the hysteretic tests of steel-reinforced reactive powder concrete (RPC) columns and reinforced RPC columns, the finite element numerical models of these two kinds of RPC columns were established by OpenSees (2016). The feasibility of the model was verified by comparing the results of tests and simulation. On this basis, the nonlinear analysis of seismic performance of cross-shaped-steel-reinforced RPC columns was carried out. The influences of different factors such as longitudinal reinforcement ratio, steel sectional resistance moment, RPC grade, steel strength and section form of shape steel on the hysteretic performance were investigated. Finally, the hysteretic model of cross-shaped-steel-reinforced RPC columns was established. The results showed that, compared with H-shaped-steel-reinforced RPC columns, the peak bearing capacity of cross-shaped-steel-reinforced RPC columns was increased by 21.2%, but the displacement ductility was obviously reduced. With the increase of slenderness ratio, the lateral stiffness and horizontal bearing capacity of cross-shaped steel RPC columns decreased rapidly. In addition, the peak load was improved with the increase of RPC strength, steel sectional resistance moment and longitudinal reinforcement ratio. The hysteretic model was consistent with the simulation results, which can effectively predict the hysteretic characteristics of cross-shaped-steel-reinforced RPC columns. The research results can provide a theoretical basis for the engineering design and application of cross-shaped-steel-reinforced RPC columns.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Seismic Behavior of Cross-Shaped-Steel-Reinforced RPC Columns\",\"authors\":\"Jingmin Wang, Zhiyu Zhu, Kun Wang\",\"doi\":\"10.3390/buildings14082310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the hysteretic tests of steel-reinforced reactive powder concrete (RPC) columns and reinforced RPC columns, the finite element numerical models of these two kinds of RPC columns were established by OpenSees (2016). The feasibility of the model was verified by comparing the results of tests and simulation. On this basis, the nonlinear analysis of seismic performance of cross-shaped-steel-reinforced RPC columns was carried out. The influences of different factors such as longitudinal reinforcement ratio, steel sectional resistance moment, RPC grade, steel strength and section form of shape steel on the hysteretic performance were investigated. Finally, the hysteretic model of cross-shaped-steel-reinforced RPC columns was established. The results showed that, compared with H-shaped-steel-reinforced RPC columns, the peak bearing capacity of cross-shaped-steel-reinforced RPC columns was increased by 21.2%, but the displacement ductility was obviously reduced. With the increase of slenderness ratio, the lateral stiffness and horizontal bearing capacity of cross-shaped steel RPC columns decreased rapidly. In addition, the peak load was improved with the increase of RPC strength, steel sectional resistance moment and longitudinal reinforcement ratio. The hysteretic model was consistent with the simulation results, which can effectively predict the hysteretic characteristics of cross-shaped-steel-reinforced RPC columns. The research results can provide a theoretical basis for the engineering design and application of cross-shaped-steel-reinforced RPC columns.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14082310\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082310","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Study on Seismic Behavior of Cross-Shaped-Steel-Reinforced RPC Columns
Based on the hysteretic tests of steel-reinforced reactive powder concrete (RPC) columns and reinforced RPC columns, the finite element numerical models of these two kinds of RPC columns were established by OpenSees (2016). The feasibility of the model was verified by comparing the results of tests and simulation. On this basis, the nonlinear analysis of seismic performance of cross-shaped-steel-reinforced RPC columns was carried out. The influences of different factors such as longitudinal reinforcement ratio, steel sectional resistance moment, RPC grade, steel strength and section form of shape steel on the hysteretic performance were investigated. Finally, the hysteretic model of cross-shaped-steel-reinforced RPC columns was established. The results showed that, compared with H-shaped-steel-reinforced RPC columns, the peak bearing capacity of cross-shaped-steel-reinforced RPC columns was increased by 21.2%, but the displacement ductility was obviously reduced. With the increase of slenderness ratio, the lateral stiffness and horizontal bearing capacity of cross-shaped steel RPC columns decreased rapidly. In addition, the peak load was improved with the increase of RPC strength, steel sectional resistance moment and longitudinal reinforcement ratio. The hysteretic model was consistent with the simulation results, which can effectively predict the hysteretic characteristics of cross-shaped-steel-reinforced RPC columns. The research results can provide a theoretical basis for the engineering design and application of cross-shaped-steel-reinforced RPC columns.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates