Taewoo Ha, Kyung Ik Sim, Howon Lee, Hyun Jun Shin, Sanghoon Kim, Se Kwon Kim, Jae Hoon Kim, Dong-Soo Han, Young Jai Choi, Byung Cheol Park
{"title":"实时观测相干自旋波的手性","authors":"Taewoo Ha, Kyung Ik Sim, Howon Lee, Hyun Jun Shin, Sanghoon Kim, Se Kwon Kim, Jae Hoon Kim, Dong-Soo Han, Young Jai Choi, Byung Cheol Park","doi":"10.1038/s44306-024-00040-5","DOIUrl":null,"url":null,"abstract":"Magnonics, a crucial domain in information science and technology, utilizes spin waves in magnets as efficient information carriers. While antiferromagnets have been suggested for versatile magnonic platform because of the coexistence of right- and left-handed spin waves, their energetic degeneracy poses challenges for observation through spectral measurements, limiting their applicability. Recent observations of distinct spin wave handedness within the gigahertz regime have reported but, are yet to be demonstrated in terahertz (THz) frequencies of antiferromagnetic spin waves. Most of all, the coherence of spin waves is a key aspect of quantum information. Here, employing THz time-domain spectroscopy—a direct, precise, and easy probe for monitoring coherent spin wave dynamics—we discern chiral antiferromagnetic spin waves of opposite phase windings in the time domain, noting their handedness reversal across the angular momentum compensation temperature in ferrimagnets. We establish a principle for directly measuring the handedness of coherent antiferromagnetic spin waves in ferrimagnets with net magnetic moment M ≠ 0 but angular momentum L = 0. Our multidimensional access in the time and spectral domain enables the accurate determination of critical temperature and the dynamic observation of coherent chiral spin waves simultaneously in a single experiment, with potential applications in exploring other quantum chiral entities.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00040-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Real-time observation of coherent spin wave handedness\",\"authors\":\"Taewoo Ha, Kyung Ik Sim, Howon Lee, Hyun Jun Shin, Sanghoon Kim, Se Kwon Kim, Jae Hoon Kim, Dong-Soo Han, Young Jai Choi, Byung Cheol Park\",\"doi\":\"10.1038/s44306-024-00040-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnonics, a crucial domain in information science and technology, utilizes spin waves in magnets as efficient information carriers. While antiferromagnets have been suggested for versatile magnonic platform because of the coexistence of right- and left-handed spin waves, their energetic degeneracy poses challenges for observation through spectral measurements, limiting their applicability. Recent observations of distinct spin wave handedness within the gigahertz regime have reported but, are yet to be demonstrated in terahertz (THz) frequencies of antiferromagnetic spin waves. Most of all, the coherence of spin waves is a key aspect of quantum information. Here, employing THz time-domain spectroscopy—a direct, precise, and easy probe for monitoring coherent spin wave dynamics—we discern chiral antiferromagnetic spin waves of opposite phase windings in the time domain, noting their handedness reversal across the angular momentum compensation temperature in ferrimagnets. We establish a principle for directly measuring the handedness of coherent antiferromagnetic spin waves in ferrimagnets with net magnetic moment M ≠ 0 but angular momentum L = 0. Our multidimensional access in the time and spectral domain enables the accurate determination of critical temperature and the dynamic observation of coherent chiral spin waves simultaneously in a single experiment, with potential applications in exploring other quantum chiral entities.\",\"PeriodicalId\":501713,\"journal\":{\"name\":\"npj Spintronics\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44306-024-00040-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Spintronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44306-024-00040-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00040-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
磁学是信息科学与技术的一个重要领域,它利用磁体中的自旋波作为高效的信息载体。虽然反铁磁体因左右手自旋波的共存而被认为是多功能的磁性平台,但其能量退化性给光谱测量观测带来了挑战,限制了其适用性。最近有报道称在千兆赫范围内观测到了不同的自旋波手性,但在太赫兹(THz)频率的反铁磁性自旋波中尚未得到证实。最重要的是,自旋波的相干性是量子信息的一个关键方面。在这里,我们利用太赫兹时域光谱--一种直接、精确、易于监测相干自旋波动态的探针--在时域中发现了相位绕组相反的手性反铁磁自旋波,并注意到它们在铁磁体角动量补偿温度下的手性反转。我们建立了一种原理,可以直接测量净磁矩 M≠0 但角动量 L = 0 的铁氧体中相干反铁磁自旋波的手性。我们在时域和频谱域的多维访问使我们能够在一次实验中同时精确测定临界温度和动态观测相干手性自旋波,这在探索其他量子手性实体方面具有潜在的应用价值。
Real-time observation of coherent spin wave handedness
Magnonics, a crucial domain in information science and technology, utilizes spin waves in magnets as efficient information carriers. While antiferromagnets have been suggested for versatile magnonic platform because of the coexistence of right- and left-handed spin waves, their energetic degeneracy poses challenges for observation through spectral measurements, limiting their applicability. Recent observations of distinct spin wave handedness within the gigahertz regime have reported but, are yet to be demonstrated in terahertz (THz) frequencies of antiferromagnetic spin waves. Most of all, the coherence of spin waves is a key aspect of quantum information. Here, employing THz time-domain spectroscopy—a direct, precise, and easy probe for monitoring coherent spin wave dynamics—we discern chiral antiferromagnetic spin waves of opposite phase windings in the time domain, noting their handedness reversal across the angular momentum compensation temperature in ferrimagnets. We establish a principle for directly measuring the handedness of coherent antiferromagnetic spin waves in ferrimagnets with net magnetic moment M ≠ 0 but angular momentum L = 0. Our multidimensional access in the time and spectral domain enables the accurate determination of critical temperature and the dynamic observation of coherent chiral spin waves simultaneously in a single experiment, with potential applications in exploring other quantum chiral entities.