{"title":"通过热载流子注入实现亚带隙光电探测的互联等离子纳米隙天线","authors":"J. Grasso, Rahul Raman, Brian G. Willis","doi":"10.1142/s0129156424400524","DOIUrl":null,"url":null,"abstract":"Modern integrated circuits have active components on the order of nanometers. However, optical devices are often limited by diffraction effects with dimensions measured in wavelengths. Nanoscale photodetectors capable of converting light into electrical signals are necessary for the miniaturization of optoelectronic applications. Strong coupling of light and free electrons in plasmonic nanostructures overcomes these limitations by confining light into sub-wavelength volumes with intense local electric fields. Localized electric fields are intensified at nanorod ends and in nanogap regions between nanostructures. Hot carriers generated within these high-field regions from nonradiative decay of surface plasmons can be injected into the conduction band of adjacent semiconductors, enabling sub-bandgap photodetection. The optical properties of these plasmonic photodetectors can be tuned by modifying antenna materials and geometric parameters like size, thickness, and shape. Electrical interconnects provide connectivity to convert light into electrical signals. In this work, interconnected nanogap antennas fabricated with 35 nm gaps are encapsulated with ALD-deposited TiO2, enabling photodetection via Schottky barrier junctions. Photodetectors with high responsivity (12[Formula: see text][Formula: see text]A/mW) are presented for wavelengths below the bandgap of TiO2 (3.2[Formula: see text]eV). These plasmonic nanogap antennas are sub-wavelength, tunable photodetectors with sub-bandgap responsivity for a broad spectral range.","PeriodicalId":35778,"journal":{"name":"International Journal of High Speed Electronics and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interconnected Plasmonic Nanogap Antennas for Sub-Bandgap Photodetection via Hot Carrier Injection\",\"authors\":\"J. Grasso, Rahul Raman, Brian G. Willis\",\"doi\":\"10.1142/s0129156424400524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern integrated circuits have active components on the order of nanometers. However, optical devices are often limited by diffraction effects with dimensions measured in wavelengths. Nanoscale photodetectors capable of converting light into electrical signals are necessary for the miniaturization of optoelectronic applications. Strong coupling of light and free electrons in plasmonic nanostructures overcomes these limitations by confining light into sub-wavelength volumes with intense local electric fields. Localized electric fields are intensified at nanorod ends and in nanogap regions between nanostructures. Hot carriers generated within these high-field regions from nonradiative decay of surface plasmons can be injected into the conduction band of adjacent semiconductors, enabling sub-bandgap photodetection. The optical properties of these plasmonic photodetectors can be tuned by modifying antenna materials and geometric parameters like size, thickness, and shape. Electrical interconnects provide connectivity to convert light into electrical signals. In this work, interconnected nanogap antennas fabricated with 35 nm gaps are encapsulated with ALD-deposited TiO2, enabling photodetection via Schottky barrier junctions. Photodetectors with high responsivity (12[Formula: see text][Formula: see text]A/mW) are presented for wavelengths below the bandgap of TiO2 (3.2[Formula: see text]eV). These plasmonic nanogap antennas are sub-wavelength, tunable photodetectors with sub-bandgap responsivity for a broad spectral range.\",\"PeriodicalId\":35778,\"journal\":{\"name\":\"International Journal of High Speed Electronics and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Speed Electronics and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129156424400524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Speed Electronics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129156424400524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Interconnected Plasmonic Nanogap Antennas for Sub-Bandgap Photodetection via Hot Carrier Injection
Modern integrated circuits have active components on the order of nanometers. However, optical devices are often limited by diffraction effects with dimensions measured in wavelengths. Nanoscale photodetectors capable of converting light into electrical signals are necessary for the miniaturization of optoelectronic applications. Strong coupling of light and free electrons in plasmonic nanostructures overcomes these limitations by confining light into sub-wavelength volumes with intense local electric fields. Localized electric fields are intensified at nanorod ends and in nanogap regions between nanostructures. Hot carriers generated within these high-field regions from nonradiative decay of surface plasmons can be injected into the conduction band of adjacent semiconductors, enabling sub-bandgap photodetection. The optical properties of these plasmonic photodetectors can be tuned by modifying antenna materials and geometric parameters like size, thickness, and shape. Electrical interconnects provide connectivity to convert light into electrical signals. In this work, interconnected nanogap antennas fabricated with 35 nm gaps are encapsulated with ALD-deposited TiO2, enabling photodetection via Schottky barrier junctions. Photodetectors with high responsivity (12[Formula: see text][Formula: see text]A/mW) are presented for wavelengths below the bandgap of TiO2 (3.2[Formula: see text]eV). These plasmonic nanogap antennas are sub-wavelength, tunable photodetectors with sub-bandgap responsivity for a broad spectral range.
期刊介绍:
Launched in 1990, the International Journal of High Speed Electronics and Systems (IJHSES) has served graduate students and those in R&D, managerial and marketing positions by giving state-of-the-art data, and the latest research trends. Its main charter is to promote engineering education by advancing interdisciplinary science between electronics and systems and to explore high speed technology in photonics and electronics. IJHSES, a quarterly journal, continues to feature a broad coverage of topics relating to high speed or high performance devices, circuits and systems.