基于反向传播神经网络的国际贸易物流预测研究

Feng Yuan
{"title":"基于反向传播神经网络的国际贸易物流预测研究","authors":"Feng Yuan","doi":"10.54254/2755-2721/69/20241521","DOIUrl":null,"url":null,"abstract":"The development of international trade depends to a large extent on the progress of international logistics. However, international logistics cannot exist independently of international trade. Without goods provided by international trade, international logistics loses its foundation. Therefore, in order to accurately assess the demand for international logistics, it is necessary to have a detailed understanding of the development of international trade and to predict its future trends accordingly. In this work, we utilize backpropagation neural networks to predict trends and needs in international trade logistics. Specifically, we build a multi-layer perceptron model, which selects a variety of input variables such as goods circulation, economic indicators, trade policies, and seasonal factors. By training this model, it is possible to effectively learn and capture the complex relationships that affect international trade logistics from historical data. In the experimental analysis, the model has been repeatedly trained and adjusted, and finally demonstrated high accuracy and reliability.","PeriodicalId":502253,"journal":{"name":"Applied and Computational Engineering","volume":"52 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on international trade logistics prediction based on back propagation neural network\",\"authors\":\"Feng Yuan\",\"doi\":\"10.54254/2755-2721/69/20241521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of international trade depends to a large extent on the progress of international logistics. However, international logistics cannot exist independently of international trade. Without goods provided by international trade, international logistics loses its foundation. Therefore, in order to accurately assess the demand for international logistics, it is necessary to have a detailed understanding of the development of international trade and to predict its future trends accordingly. In this work, we utilize backpropagation neural networks to predict trends and needs in international trade logistics. Specifically, we build a multi-layer perceptron model, which selects a variety of input variables such as goods circulation, economic indicators, trade policies, and seasonal factors. By training this model, it is possible to effectively learn and capture the complex relationships that affect international trade logistics from historical data. In the experimental analysis, the model has been repeatedly trained and adjusted, and finally demonstrated high accuracy and reliability.\",\"PeriodicalId\":502253,\"journal\":{\"name\":\"Applied and Computational Engineering\",\"volume\":\"52 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54254/2755-2721/69/20241521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/69/20241521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

国际贸易的发展在很大程度上取决于国际物流的进步。然而,国际物流不能脱离国际贸易而独立存在。没有国际贸易提供的货物,国际物流就失去了基础。因此,要准确评估国际物流的需求,就必须详细了解国际贸易的发展情况,并据此预测其未来的发展趋势。在这项工作中,我们利用反向传播神经网络来预测国际贸易物流的趋势和需求。具体来说,我们建立了一个多层感知器模型,该模型选择了多种输入变量,如货物流通、经济指标、贸易政策和季节性因素等。通过训练该模型,可以从历史数据中有效地学习和捕捉影响国际贸易物流的复杂关系。在实验分析中,该模型经过反复训练和调整,最终表现出较高的准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on international trade logistics prediction based on back propagation neural network
The development of international trade depends to a large extent on the progress of international logistics. However, international logistics cannot exist independently of international trade. Without goods provided by international trade, international logistics loses its foundation. Therefore, in order to accurately assess the demand for international logistics, it is necessary to have a detailed understanding of the development of international trade and to predict its future trends accordingly. In this work, we utilize backpropagation neural networks to predict trends and needs in international trade logistics. Specifically, we build a multi-layer perceptron model, which selects a variety of input variables such as goods circulation, economic indicators, trade policies, and seasonal factors. By training this model, it is possible to effectively learn and capture the complex relationships that affect international trade logistics from historical data. In the experimental analysis, the model has been repeatedly trained and adjusted, and finally demonstrated high accuracy and reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on integrating hydrogen energy storage with solar and wind power for Net-Zero energy buildings Design and implementation of scrambling and decoding circuits Research on the life cycle assessment of cement Research on the intelligent fatigue detection of metal components in vehicles Research progress in home energy management systems consideration of comfort
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1