通过全面管理提高数据质量:方法、工具和持续改进技术

Courage Idemudia, Adebimpe Bolatito Ige, Victor Ibukun Adebayo, Osemeike Gloria Eyieyien
{"title":"通过全面管理提高数据质量:方法、工具和持续改进技术","authors":"Courage Idemudia, Adebimpe Bolatito Ige, Victor Ibukun Adebayo, Osemeike Gloria Eyieyien","doi":"10.51594/csitrj.v5i7.1352","DOIUrl":null,"url":null,"abstract":"In the era of data-driven decision-making, ensuring data quality is paramount for organizations seeking to leverage their data assets effectively. This paper explores comprehensive strategies for enhancing data quality through robust governance, methodologies, tools, and continuous improvement techniques. It highlights the critical dimensions of data quality, including accuracy, completeness, consistency, timeliness, validity, and uniqueness. It discusses various assessment techniques, such as data profiling, auditing, and quality metrics. The paper also examines the role of data cleansing, enrichment, integration, and interoperability in maintaining high data quality. Additionally, it provides an overview of leading data quality management tools, their evaluation criteria, and best practices for implementation. Finally, it underscores the importance of continuous monitoring, feedback loops, root cause analysis, and fostering an organization's data quality culture. By adopting these strategies, organizations can ensure the reliability and integrity of their data, leading to improved business outcomes. \nKeywords: Data Quality, Data Governance, Data Profiling, Data Cleansing, Continuous Improvement.","PeriodicalId":282796,"journal":{"name":"Computer Science & IT Research Journal","volume":"52 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing data quality through comprehensive governance: Methodologies, tools, and continuous improvement techniques\",\"authors\":\"Courage Idemudia, Adebimpe Bolatito Ige, Victor Ibukun Adebayo, Osemeike Gloria Eyieyien\",\"doi\":\"10.51594/csitrj.v5i7.1352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the era of data-driven decision-making, ensuring data quality is paramount for organizations seeking to leverage their data assets effectively. This paper explores comprehensive strategies for enhancing data quality through robust governance, methodologies, tools, and continuous improvement techniques. It highlights the critical dimensions of data quality, including accuracy, completeness, consistency, timeliness, validity, and uniqueness. It discusses various assessment techniques, such as data profiling, auditing, and quality metrics. The paper also examines the role of data cleansing, enrichment, integration, and interoperability in maintaining high data quality. Additionally, it provides an overview of leading data quality management tools, their evaluation criteria, and best practices for implementation. Finally, it underscores the importance of continuous monitoring, feedback loops, root cause analysis, and fostering an organization's data quality culture. By adopting these strategies, organizations can ensure the reliability and integrity of their data, leading to improved business outcomes. \\nKeywords: Data Quality, Data Governance, Data Profiling, Data Cleansing, Continuous Improvement.\",\"PeriodicalId\":282796,\"journal\":{\"name\":\"Computer Science & IT Research Journal\",\"volume\":\"52 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science & IT Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51594/csitrj.v5i7.1352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science & IT Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51594/csitrj.v5i7.1352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数据驱动决策的时代,确保数据质量对于希望有效利用数据资产的组织来说至关重要。本文探讨了通过稳健的管理、方法、工具和持续改进技术提高数据质量的综合战略。它强调了数据质量的关键维度,包括准确性、完整性、一致性、及时性、有效性和唯一性。文件讨论了各种评估技术,如数据剖析、审计和质量度量。本文还探讨了数据清理、丰富、集成和互操作性在保持高质量数据方面的作用。此外,它还概述了领先的数据质量管理工具、其评估标准和最佳实施实践。最后,它强调了持续监控、反馈回路、根本原因分析和培养企业数据质量文化的重要性。通过采用这些策略,企业可以确保数据的可靠性和完整性,从而改善业务成果。关键词:数据质量数据质量、数据治理、数据剖析、数据清理、持续改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing data quality through comprehensive governance: Methodologies, tools, and continuous improvement techniques
In the era of data-driven decision-making, ensuring data quality is paramount for organizations seeking to leverage their data assets effectively. This paper explores comprehensive strategies for enhancing data quality through robust governance, methodologies, tools, and continuous improvement techniques. It highlights the critical dimensions of data quality, including accuracy, completeness, consistency, timeliness, validity, and uniqueness. It discusses various assessment techniques, such as data profiling, auditing, and quality metrics. The paper also examines the role of data cleansing, enrichment, integration, and interoperability in maintaining high data quality. Additionally, it provides an overview of leading data quality management tools, their evaluation criteria, and best practices for implementation. Finally, it underscores the importance of continuous monitoring, feedback loops, root cause analysis, and fostering an organization's data quality culture. By adopting these strategies, organizations can ensure the reliability and integrity of their data, leading to improved business outcomes. Keywords: Data Quality, Data Governance, Data Profiling, Data Cleansing, Continuous Improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of pandemic in driving adoption of artificial intelligence in healthcare industry Challenges and strategies in securing smart environmental applications: A comprehensive review of cybersecurity measures Advances in machine learning-driven pore pressure prediction in complex geological settings Data science's pivotal role in enhancing oil recovery methods while minimizing environmental footprints: An insightful review Machine learning software for optimizing SME social media marketing campaigns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1