Afshin Hasani, Hossein Heydari, Mohammad Sadegh Golsorkhi
{"title":"利用基于人工智能的预测控制提高微电网性能:建立智能分布式控制系统","authors":"Afshin Hasani, Hossein Heydari, Mohammad Sadegh Golsorkhi","doi":"10.1049/gtd2.13191","DOIUrl":null,"url":null,"abstract":"<p>Microgrids play a pivotal role in modern power distribution systems, necessitating precise control methodologies to tackle challenges such as performance instability, especially during islanding operations. This paper introduces an advanced control strategy that employs artificial intelligence, specifically deep neural network (DNN) predictions, to enhance microgrid performance, particularly in an islanding mode where voltage and frequency (VaF) deviations are critical concerns. By utilizing real-time data and historical trends, the proposed controller accurately forecasts power demand and generation patterns, enabling proactive planning and optimization of efficiency, reliability, and sustainability in microgrid management. One significant aspect of this approach is to establish an intelligent distributed control system that minimizes reliance on communication devices while ensuring that VaF remains within acceptable limits. Moreover, it consolidates the roles of primary and secondary controllers within the microgrid and facilitates the prediction of load changes and load injection processes. This capability significantly reduces microgrid VaF deviations, enhancing system performance through precise power distribution and balanced coordination among distributed generators. Consequently, it ensures the stability and reliability of the system. In summary, the integration of DNN-based predictive control represents a significant advancement in microgrid management, providing a solution to address performance challenges and optimize operational efficiency, reliability, and sustainability.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13191","citationCount":"0","resultStr":"{\"title\":\"Enhancing microgrid performance with AI-based predictive control: Establishing an intelligent distributed control system\",\"authors\":\"Afshin Hasani, Hossein Heydari, Mohammad Sadegh Golsorkhi\",\"doi\":\"10.1049/gtd2.13191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microgrids play a pivotal role in modern power distribution systems, necessitating precise control methodologies to tackle challenges such as performance instability, especially during islanding operations. This paper introduces an advanced control strategy that employs artificial intelligence, specifically deep neural network (DNN) predictions, to enhance microgrid performance, particularly in an islanding mode where voltage and frequency (VaF) deviations are critical concerns. By utilizing real-time data and historical trends, the proposed controller accurately forecasts power demand and generation patterns, enabling proactive planning and optimization of efficiency, reliability, and sustainability in microgrid management. One significant aspect of this approach is to establish an intelligent distributed control system that minimizes reliance on communication devices while ensuring that VaF remains within acceptable limits. Moreover, it consolidates the roles of primary and secondary controllers within the microgrid and facilitates the prediction of load changes and load injection processes. This capability significantly reduces microgrid VaF deviations, enhancing system performance through precise power distribution and balanced coordination among distributed generators. Consequently, it ensures the stability and reliability of the system. In summary, the integration of DNN-based predictive control represents a significant advancement in microgrid management, providing a solution to address performance challenges and optimize operational efficiency, reliability, and sustainability.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13191\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13191\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13191","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Enhancing microgrid performance with AI-based predictive control: Establishing an intelligent distributed control system
Microgrids play a pivotal role in modern power distribution systems, necessitating precise control methodologies to tackle challenges such as performance instability, especially during islanding operations. This paper introduces an advanced control strategy that employs artificial intelligence, specifically deep neural network (DNN) predictions, to enhance microgrid performance, particularly in an islanding mode where voltage and frequency (VaF) deviations are critical concerns. By utilizing real-time data and historical trends, the proposed controller accurately forecasts power demand and generation patterns, enabling proactive planning and optimization of efficiency, reliability, and sustainability in microgrid management. One significant aspect of this approach is to establish an intelligent distributed control system that minimizes reliance on communication devices while ensuring that VaF remains within acceptable limits. Moreover, it consolidates the roles of primary and secondary controllers within the microgrid and facilitates the prediction of load changes and load injection processes. This capability significantly reduces microgrid VaF deviations, enhancing system performance through precise power distribution and balanced coordination among distributed generators. Consequently, it ensures the stability and reliability of the system. In summary, the integration of DNN-based predictive control represents a significant advancement in microgrid management, providing a solution to address performance challenges and optimize operational efficiency, reliability, and sustainability.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf