Domiziana Vespasiano, Antonio Sgaramella, G. Lo Basso, L. de Santoli, L. Pastore
{"title":"天然气管道中的氢气混合物:住宅领域的能源、环境和经济影响","authors":"Domiziana Vespasiano, Antonio Sgaramella, G. Lo Basso, L. de Santoli, L. Pastore","doi":"10.3390/buildings14082284","DOIUrl":null,"url":null,"abstract":"The forthcoming implementation of national policies towards hydrogen blending into the natural gas grid will affect the technical and economic parameters that must be taken into account in the design of building heating systems. This study evaluates the implications of using hydrogen-enriched natural gas (H2NG) blends in condensing boilers and Gas Adsorption Heat Pumps (GAHPs) in a residential building in Rome, Italy. The analysis considers several parameters, including non-renewable primary energy consumption, CO2 emissions, Levelized Cost of Heat (LCOH), and Carbon Abatement Cost (CAC). The results show that a 30% hydrogen blend achieves a primary energy consumption reduction of 12.05% and 11.19% in boilers and GAHPs, respectively. The presence of hydrogen in the mixture exerts a more pronounced influence on the reduction in fossil primary energy and CO2 emissions in condensing boilers, as it enhances combustion efficiency. The GAHP system turns out to be more cost-effective due to its higher efficiency. At current hydrogen costs, the LCOH of both technologies increases as the volume fraction of hydrogen increases. The forthcoming cost reduction in hydrogen will reduce the LCOH and the decarbonization cost for both technologies. At low hydrogen prices, the CAC for boilers is lower than for GAHPs; therefore, replacing boilers with other gas technologies rather than electric heat pumps increases the risk of creating stranded assets. In conclusion, blending hydrogen into the gas grid can be a useful policy to reduce emissions from the overall natural gas consumption during the process of end-use electrification, while stimulating the development of a hydrogen economy.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen Blending in Natural Gas Grid: Energy, Environmental, and Economic Implications in the Residential Sector\",\"authors\":\"Domiziana Vespasiano, Antonio Sgaramella, G. Lo Basso, L. de Santoli, L. Pastore\",\"doi\":\"10.3390/buildings14082284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The forthcoming implementation of national policies towards hydrogen blending into the natural gas grid will affect the technical and economic parameters that must be taken into account in the design of building heating systems. This study evaluates the implications of using hydrogen-enriched natural gas (H2NG) blends in condensing boilers and Gas Adsorption Heat Pumps (GAHPs) in a residential building in Rome, Italy. The analysis considers several parameters, including non-renewable primary energy consumption, CO2 emissions, Levelized Cost of Heat (LCOH), and Carbon Abatement Cost (CAC). The results show that a 30% hydrogen blend achieves a primary energy consumption reduction of 12.05% and 11.19% in boilers and GAHPs, respectively. The presence of hydrogen in the mixture exerts a more pronounced influence on the reduction in fossil primary energy and CO2 emissions in condensing boilers, as it enhances combustion efficiency. The GAHP system turns out to be more cost-effective due to its higher efficiency. At current hydrogen costs, the LCOH of both technologies increases as the volume fraction of hydrogen increases. The forthcoming cost reduction in hydrogen will reduce the LCOH and the decarbonization cost for both technologies. At low hydrogen prices, the CAC for boilers is lower than for GAHPs; therefore, replacing boilers with other gas technologies rather than electric heat pumps increases the risk of creating stranded assets. In conclusion, blending hydrogen into the gas grid can be a useful policy to reduce emissions from the overall natural gas consumption during the process of end-use electrification, while stimulating the development of a hydrogen economy.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14082284\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082284","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Hydrogen Blending in Natural Gas Grid: Energy, Environmental, and Economic Implications in the Residential Sector
The forthcoming implementation of national policies towards hydrogen blending into the natural gas grid will affect the technical and economic parameters that must be taken into account in the design of building heating systems. This study evaluates the implications of using hydrogen-enriched natural gas (H2NG) blends in condensing boilers and Gas Adsorption Heat Pumps (GAHPs) in a residential building in Rome, Italy. The analysis considers several parameters, including non-renewable primary energy consumption, CO2 emissions, Levelized Cost of Heat (LCOH), and Carbon Abatement Cost (CAC). The results show that a 30% hydrogen blend achieves a primary energy consumption reduction of 12.05% and 11.19% in boilers and GAHPs, respectively. The presence of hydrogen in the mixture exerts a more pronounced influence on the reduction in fossil primary energy and CO2 emissions in condensing boilers, as it enhances combustion efficiency. The GAHP system turns out to be more cost-effective due to its higher efficiency. At current hydrogen costs, the LCOH of both technologies increases as the volume fraction of hydrogen increases. The forthcoming cost reduction in hydrogen will reduce the LCOH and the decarbonization cost for both technologies. At low hydrogen prices, the CAC for boilers is lower than for GAHPs; therefore, replacing boilers with other gas technologies rather than electric heat pumps increases the risk of creating stranded assets. In conclusion, blending hydrogen into the gas grid can be a useful policy to reduce emissions from the overall natural gas consumption during the process of end-use electrification, while stimulating the development of a hydrogen economy.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates