Yang Yang, Long Li, G. Yao, Bo Wu, Dawu Wang, Hui Yu, Hao Qu
{"title":"风整流参数对大跨度双层钢桁梁悬索桥空气动力性能的影响研究","authors":"Yang Yang, Long Li, G. Yao, Bo Wu, Dawu Wang, Hui Yu, Hao Qu","doi":"10.3390/buildings14072255","DOIUrl":null,"url":null,"abstract":"A long-span double-deck steel truss suspension bridge is easy to produce vortex-induced vibration (VIV) at low air velocity, which affects bridge service life. Additional aerodynamic measures play a role in suppressing VIV by changing the aerodynamic shape, which is a common control method. As the main aerodynamic measure to suppress the VIV response, wind fairing is widely used in engineering practice. In order to obtain the optimal additional position and shape parameters of the fairing, Huangjuetuo Yangtze River Bridge is the research target. Through the combination of a wind tunnel test and numerical simulation, the VIV response of the original and fairing section is studied. Based on data analysis, it is revealed that these additional fairings to the upper chord can significantly reduce the VIV response. When the shape parameters of the fairing are h/D = 1/4 and l/D = 1, the VIV inhibition efficiency is the highest, which can reach 65.51%. By analyzing the flow distribution, it can be seen that VIV is caused mainly by vortex separation in the upper bridge board area. Although this wind fairing does not change the original vortex shedding forms, it changes the first separation point and movement direction of the airflow, making the vortex scale generated by the airflow smaller and the vorticity lower, thus effectively suppressing VIV.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Influence of Wind Fairing Parameters on the Aerodynamic Performance of Long-Span Double-Deck Steel Truss Suspension Bridge\",\"authors\":\"Yang Yang, Long Li, G. Yao, Bo Wu, Dawu Wang, Hui Yu, Hao Qu\",\"doi\":\"10.3390/buildings14072255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A long-span double-deck steel truss suspension bridge is easy to produce vortex-induced vibration (VIV) at low air velocity, which affects bridge service life. Additional aerodynamic measures play a role in suppressing VIV by changing the aerodynamic shape, which is a common control method. As the main aerodynamic measure to suppress the VIV response, wind fairing is widely used in engineering practice. In order to obtain the optimal additional position and shape parameters of the fairing, Huangjuetuo Yangtze River Bridge is the research target. Through the combination of a wind tunnel test and numerical simulation, the VIV response of the original and fairing section is studied. Based on data analysis, it is revealed that these additional fairings to the upper chord can significantly reduce the VIV response. When the shape parameters of the fairing are h/D = 1/4 and l/D = 1, the VIV inhibition efficiency is the highest, which can reach 65.51%. By analyzing the flow distribution, it can be seen that VIV is caused mainly by vortex separation in the upper bridge board area. Although this wind fairing does not change the original vortex shedding forms, it changes the first separation point and movement direction of the airflow, making the vortex scale generated by the airflow smaller and the vorticity lower, thus effectively suppressing VIV.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14072255\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14072255","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Study on the Influence of Wind Fairing Parameters on the Aerodynamic Performance of Long-Span Double-Deck Steel Truss Suspension Bridge
A long-span double-deck steel truss suspension bridge is easy to produce vortex-induced vibration (VIV) at low air velocity, which affects bridge service life. Additional aerodynamic measures play a role in suppressing VIV by changing the aerodynamic shape, which is a common control method. As the main aerodynamic measure to suppress the VIV response, wind fairing is widely used in engineering practice. In order to obtain the optimal additional position and shape parameters of the fairing, Huangjuetuo Yangtze River Bridge is the research target. Through the combination of a wind tunnel test and numerical simulation, the VIV response of the original and fairing section is studied. Based on data analysis, it is revealed that these additional fairings to the upper chord can significantly reduce the VIV response. When the shape parameters of the fairing are h/D = 1/4 and l/D = 1, the VIV inhibition efficiency is the highest, which can reach 65.51%. By analyzing the flow distribution, it can be seen that VIV is caused mainly by vortex separation in the upper bridge board area. Although this wind fairing does not change the original vortex shedding forms, it changes the first separation point and movement direction of the airflow, making the vortex scale generated by the airflow smaller and the vorticity lower, thus effectively suppressing VIV.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates