基于 ICEEMDAN-MSA-ConvGRU 模型的高压输电线路故障定位新方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-22 DOI:10.1049/gtd2.13225
Taorong Jia, Lixiao Yao, Guoqing Yang
{"title":"基于 ICEEMDAN-MSA-ConvGRU 模型的高压输电线路故障定位新方法","authors":"Taorong Jia,&nbsp;Lixiao Yao,&nbsp;Guoqing Yang","doi":"10.1049/gtd2.13225","DOIUrl":null,"url":null,"abstract":"<p>Given the complex form of distribution line faults, the accuracy of fault location using traditional artificial intelligence networks needs to be further improved. Here, a combined fault location method is proposed for a 110 kV distribution line based on the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), mantis search algorithm (MSA), and convolutional gate recurrent unit (ConvGRU). Firstly, the study used the ICEEMDAN algorithm to decompose the signals and discard the high-frequency signals with low correlation so as to achieve the purpose of noise cancellation. Then, the study used the root mean square error (RMSE) of the ConvGRU model training as the adaptation value, optimized the internal parameters of the model using the MSA algorithm, and obtained a combined fault locating model. By using the proposed model, the effects of the fault form and transition impedance changes on the location accuracy were analysed, and the location accuracy was compared with other artificial intelligence methods. The location accuracy index showed that the proposed model had a better convergence speed of training error than the traditional model. Also, the RMSE of the localization results was reduced by 50%, with a higher fault location accuracy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13225","citationCount":"0","resultStr":"{\"title\":\"A new fault location method for high-voltage transmission lines based on ICEEMDAN-MSA-ConvGRU model\",\"authors\":\"Taorong Jia,&nbsp;Lixiao Yao,&nbsp;Guoqing Yang\",\"doi\":\"10.1049/gtd2.13225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given the complex form of distribution line faults, the accuracy of fault location using traditional artificial intelligence networks needs to be further improved. Here, a combined fault location method is proposed for a 110 kV distribution line based on the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), mantis search algorithm (MSA), and convolutional gate recurrent unit (ConvGRU). Firstly, the study used the ICEEMDAN algorithm to decompose the signals and discard the high-frequency signals with low correlation so as to achieve the purpose of noise cancellation. Then, the study used the root mean square error (RMSE) of the ConvGRU model training as the adaptation value, optimized the internal parameters of the model using the MSA algorithm, and obtained a combined fault locating model. By using the proposed model, the effects of the fault form and transition impedance changes on the location accuracy were analysed, and the location accuracy was compared with other artificial intelligence methods. The location accuracy index showed that the proposed model had a better convergence speed of training error than the traditional model. Also, the RMSE of the localization results was reduced by 50%, with a higher fault location accuracy.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13225\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

鉴于配电线路故障的复杂形式,使用传统人工智能网络进行故障定位的准确性有待进一步提高。本文提出了一种基于自适应噪声改进型完全集合经验模式分解(ICEEMDAN)、螳螂搜索算法(MSA)和卷积门递归单元(ConvGRU)的 110 千伏配电线路组合故障定位方法。首先,研究使用 ICEEMDAN 算法对信号进行分解,剔除相关性较低的高频信号,从而达到消除噪声的目的。然后,以 ConvGRU 模型训练的均方根误差(RMSE)作为适应值,利用 MSA 算法优化模型内部参数,得到组合故障定位模型。利用提出的模型,分析了故障形式和过渡阻抗变化对定位精度的影响,并将定位精度与其他人工智能方法进行了比较。定位精度指标表明,与传统模型相比,所提模型的训练误差收敛速度更快。同时,定位结果的均方根误差降低了 50%,故障定位精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new fault location method for high-voltage transmission lines based on ICEEMDAN-MSA-ConvGRU model

Given the complex form of distribution line faults, the accuracy of fault location using traditional artificial intelligence networks needs to be further improved. Here, a combined fault location method is proposed for a 110 kV distribution line based on the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), mantis search algorithm (MSA), and convolutional gate recurrent unit (ConvGRU). Firstly, the study used the ICEEMDAN algorithm to decompose the signals and discard the high-frequency signals with low correlation so as to achieve the purpose of noise cancellation. Then, the study used the root mean square error (RMSE) of the ConvGRU model training as the adaptation value, optimized the internal parameters of the model using the MSA algorithm, and obtained a combined fault locating model. By using the proposed model, the effects of the fault form and transition impedance changes on the location accuracy were analysed, and the location accuracy was compared with other artificial intelligence methods. The location accuracy index showed that the proposed model had a better convergence speed of training error than the traditional model. Also, the RMSE of the localization results was reduced by 50%, with a higher fault location accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1