Dengming Yan, Liu Su, Simin Liu, Hong Lv, Jin Lin, Zhilei Yu, Lucong Cao
{"title":"基于矩估计加权和改进的灰色目标模型的城市洪水承载脆弱性评估","authors":"Dengming Yan, Liu Su, Simin Liu, Hong Lv, Jin Lin, Zhilei Yu, Lucong Cao","doi":"10.2166/wst.2024.250","DOIUrl":null,"url":null,"abstract":"\n Increasingly severe flooding seriously threatens urban safety. A scientific urban flood-bearing vulnerability assessment model is significant to improve urban risk management capacity. The gray target model (GTM) has advantages in urban flood-bearing vulnerability assessment. However, indicator correlation and single bull's-eye are commonly neglected, leading to defective evaluation results. By integrating the four base weights, an improved weighting method based on the moment estimate was proposed. Then, the marginal distance was used to quantify the indicator correlation, and the TOPSIS model was introduced to define the relative bull's-eye distance. Thus, an improved gray target evaluation method was established. Finally, an urban flood-bearing vulnerability evaluation model was presented based on the moment estimate weighting-improved GTM. In this study, Zhengzhou City, China, was taken as an example. The spatial and temporal changing characteristics of the flood-bearing vulnerability of Zhengzhou from 2006 to 2020 were investigated. The results show that: (1) On the temporal scale, the disaster-bearing vulnerability of Zhengzhou City showed an upward trend during the 15 years; (2) On the spatial scale, Guancheng District of Zhengzhou City had the relatively highest vulnerability to urban flooding. This study is expected to provide a scientific reference for urban flood prevention and resilient construction.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"81 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban flood-bearing vulnerability evaluation based on the moment estimate weighting and improved gray target model\",\"authors\":\"Dengming Yan, Liu Su, Simin Liu, Hong Lv, Jin Lin, Zhilei Yu, Lucong Cao\",\"doi\":\"10.2166/wst.2024.250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Increasingly severe flooding seriously threatens urban safety. A scientific urban flood-bearing vulnerability assessment model is significant to improve urban risk management capacity. The gray target model (GTM) has advantages in urban flood-bearing vulnerability assessment. However, indicator correlation and single bull's-eye are commonly neglected, leading to defective evaluation results. By integrating the four base weights, an improved weighting method based on the moment estimate was proposed. Then, the marginal distance was used to quantify the indicator correlation, and the TOPSIS model was introduced to define the relative bull's-eye distance. Thus, an improved gray target evaluation method was established. Finally, an urban flood-bearing vulnerability evaluation model was presented based on the moment estimate weighting-improved GTM. In this study, Zhengzhou City, China, was taken as an example. The spatial and temporal changing characteristics of the flood-bearing vulnerability of Zhengzhou from 2006 to 2020 were investigated. The results show that: (1) On the temporal scale, the disaster-bearing vulnerability of Zhengzhou City showed an upward trend during the 15 years; (2) On the spatial scale, Guancheng District of Zhengzhou City had the relatively highest vulnerability to urban flooding. This study is expected to provide a scientific reference for urban flood prevention and resilient construction.\",\"PeriodicalId\":505935,\"journal\":{\"name\":\"Water Science & Technology\",\"volume\":\"81 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2024.250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Urban flood-bearing vulnerability evaluation based on the moment estimate weighting and improved gray target model
Increasingly severe flooding seriously threatens urban safety. A scientific urban flood-bearing vulnerability assessment model is significant to improve urban risk management capacity. The gray target model (GTM) has advantages in urban flood-bearing vulnerability assessment. However, indicator correlation and single bull's-eye are commonly neglected, leading to defective evaluation results. By integrating the four base weights, an improved weighting method based on the moment estimate was proposed. Then, the marginal distance was used to quantify the indicator correlation, and the TOPSIS model was introduced to define the relative bull's-eye distance. Thus, an improved gray target evaluation method was established. Finally, an urban flood-bearing vulnerability evaluation model was presented based on the moment estimate weighting-improved GTM. In this study, Zhengzhou City, China, was taken as an example. The spatial and temporal changing characteristics of the flood-bearing vulnerability of Zhengzhou from 2006 to 2020 were investigated. The results show that: (1) On the temporal scale, the disaster-bearing vulnerability of Zhengzhou City showed an upward trend during the 15 years; (2) On the spatial scale, Guancheng District of Zhengzhou City had the relatively highest vulnerability to urban flooding. This study is expected to provide a scientific reference for urban flood prevention and resilient construction.