用模糊理论表征纳米填料脲醛粘合刨花板的材料特性

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Bioresources Pub Date : 2024-07-22 DOI:10.15376/biores.19.3.6290-6303
Ömer Ümit Yalçın, U. Özkan, Deniz Aydemir, A. Öztel, Yafes Yildiz
{"title":"用模糊理论表征纳米填料脲醛粘合刨花板的材料特性","authors":"Ömer Ümit Yalçın, U. Özkan, Deniz Aydemir, A. Öztel, Yafes Yildiz","doi":"10.15376/biores.19.3.6290-6303","DOIUrl":null,"url":null,"abstract":"This study investigated the material characterization with the fuzzy theory of particleboards bonded by urea formaldehyde with nanofillers including nanofibrillated cellulose (NFC) and titanium dioxide (TiO2). The density, water absorption, thickness swelling, and mechanical tests (which included flexure and internal bonding strength tests) were considered. The fuzzy sets theory addressed the ambiguity and subjectivity of language using triangular fuzzy numbers to assess the interests of decision maker’s (DMs). The addition of nanofillers slightly decreased water absorption values due to possible good interactions between nanofillers and urea formaldehyde. Thickness swelling ranged from 0.4 to 17.5%, and water absorption ranged from 0.4 to 10.7% compared to the control sample. The physical properties of the samples were generally improved by urea formaldehyde with NFC/TiO2, and the densities of the test panels were found to be similar. The modulus of rupture of the panels with urea formaldehyde with nanofillers were under the EN 312 standard’s requirements, and the highest flexural strength and flexural modulus of elasticity were 11.1 and 1.3 GPa, respectively. Internal bond values were between 0.55 and 0.89 MPa. According to EDAS method rankings, 2C2T-8 was the best material, followed by 2C1T-8 and 2C-8. The samples coded with Control-4 and Control-8 were the lowest-performing materials.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Material characterization with the fuzzy theory of particleboards bonded by urea formaldehyde with nanofillers\",\"authors\":\"Ömer Ümit Yalçın, U. Özkan, Deniz Aydemir, A. Öztel, Yafes Yildiz\",\"doi\":\"10.15376/biores.19.3.6290-6303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the material characterization with the fuzzy theory of particleboards bonded by urea formaldehyde with nanofillers including nanofibrillated cellulose (NFC) and titanium dioxide (TiO2). The density, water absorption, thickness swelling, and mechanical tests (which included flexure and internal bonding strength tests) were considered. The fuzzy sets theory addressed the ambiguity and subjectivity of language using triangular fuzzy numbers to assess the interests of decision maker’s (DMs). The addition of nanofillers slightly decreased water absorption values due to possible good interactions between nanofillers and urea formaldehyde. Thickness swelling ranged from 0.4 to 17.5%, and water absorption ranged from 0.4 to 10.7% compared to the control sample. The physical properties of the samples were generally improved by urea formaldehyde with NFC/TiO2, and the densities of the test panels were found to be similar. The modulus of rupture of the panels with urea formaldehyde with nanofillers were under the EN 312 standard’s requirements, and the highest flexural strength and flexural modulus of elasticity were 11.1 and 1.3 GPa, respectively. Internal bond values were between 0.55 and 0.89 MPa. According to EDAS method rankings, 2C2T-8 was the best material, followed by 2C1T-8 and 2C-8. The samples coded with Control-4 and Control-8 were the lowest-performing materials.\",\"PeriodicalId\":9172,\"journal\":{\"name\":\"Bioresources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresources\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15376/biores.19.3.6290-6303\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15376/biores.19.3.6290-6303","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用模糊理论研究了脲醛与纳米填料(包括纳米纤维素(NFC)和二氧化钛(TiO2))粘合的刨花板的材料特性。研究考虑了密度、吸水率、厚度膨胀和机械测试(包括弯曲和内部粘接强度测试)。模糊集理论利用三角模糊数来评估决策者(DMs)的利益,从而解决了语言的模糊性和主观性问题。由于纳米填料和脲醛之间可能存在良好的相互作用,纳米填料的添加会略微降低吸水率。与对照样品相比,厚度膨胀率为 0.4% 至 17.5%,吸水率为 0.4% 至 10.7%。掺入 NFC/TiO2 的脲醛普遍提高了样品的物理性能,测试板材的密度相近。添加了纳米填料的脲醛板的断裂模数低于 EN 312 标准的要求,最高抗弯强度和抗弯弹性模量分别为 11.1 和 1.3 GPa。内部粘结值介于 0.55 和 0.89 兆帕之间。根据 EDAS 方法排名,2C2T-8 是最好的材料,其次是 2C1T-8 和 2C-8。用 Control-4 和 Control-8 编码的样品是性能最低的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Material characterization with the fuzzy theory of particleboards bonded by urea formaldehyde with nanofillers
This study investigated the material characterization with the fuzzy theory of particleboards bonded by urea formaldehyde with nanofillers including nanofibrillated cellulose (NFC) and titanium dioxide (TiO2). The density, water absorption, thickness swelling, and mechanical tests (which included flexure and internal bonding strength tests) were considered. The fuzzy sets theory addressed the ambiguity and subjectivity of language using triangular fuzzy numbers to assess the interests of decision maker’s (DMs). The addition of nanofillers slightly decreased water absorption values due to possible good interactions between nanofillers and urea formaldehyde. Thickness swelling ranged from 0.4 to 17.5%, and water absorption ranged from 0.4 to 10.7% compared to the control sample. The physical properties of the samples were generally improved by urea formaldehyde with NFC/TiO2, and the densities of the test panels were found to be similar. The modulus of rupture of the panels with urea formaldehyde with nanofillers were under the EN 312 standard’s requirements, and the highest flexural strength and flexural modulus of elasticity were 11.1 and 1.3 GPa, respectively. Internal bond values were between 0.55 and 0.89 MPa. According to EDAS method rankings, 2C2T-8 was the best material, followed by 2C1T-8 and 2C-8. The samples coded with Control-4 and Control-8 were the lowest-performing materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresources
Bioresources 工程技术-材料科学:纸与木材
CiteScore
2.90
自引率
13.30%
发文量
397
审稿时长
2.3 months
期刊介绍: The purpose of BioResources is to promote scientific discourse and to foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including wood and agricultural residues. BioResources will focus on advances in science and technology. Emphasis will be placed on bioproducts, bioenergy, papermaking technology, wood products, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.
期刊最新文献
Integrating Kansei engineering with hesitant fuzzy quality function deployment for rosewood furniture design Free drying shrinkage performance of Pinus sylvestris L. under different temperature and humidity conditions Biomass analysis of industrial hemp “Felina 32” and the influence of plant height on its quality Optimizing the extraction of Sasa quelpaertensis Nakai to develop natural cosmetics with antioxidant and whitening activities Voxel-based modular architectural design strategy toward autonomous architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1