{"title":"中小型聚苯乙烯聚合间歇反应器工艺中危险物质紧急排放的安全设计标准:韩国化学工业案例研究","authors":"Sang-Ryung Kim, Sang-Gil Kim","doi":"10.3390/fire7070260","DOIUrl":null,"url":null,"abstract":"In small and medium-sized chemical plants, explosions constantly occur owing to runaway reactions because of equipment defects or human errors and so on. Accordingly, in this study, based on a case study of an explosion accident in a polystyrene reactor in South Korea, the dis-charge capacity of hazardous substances during a runaway reaction is reviewed and a method for safely disposing of hazardous substances is proposed. Using an acceleration rate calorimeter, the maximum temperature rise rate during the polystyrene reaction was determined, and it was determined that 355,643 kg/h can flow during a runaway reaction. A 30-inch header size was then selected to consider maximum flow rate, and two 81.4 m2 heat exchangers were selected to completely condense the hazardous substances. As a result, the facilities at the workplace were configured to condense all hazardous substances and discharge them into the atmosphere. If this method is used, it is believed that the lives of workers can be protected by preventing fires and explosions in small and medium-sized chemical plants in which runaway reactions may occur.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"47 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safety Design Criteria for the Emergency Discharge of Hazardous Substances in Small and Medium-Sized Polystyrene Polymerization Batch Reactor Processes: Case Study of the South Korean Chemical Industry\",\"authors\":\"Sang-Ryung Kim, Sang-Gil Kim\",\"doi\":\"10.3390/fire7070260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In small and medium-sized chemical plants, explosions constantly occur owing to runaway reactions because of equipment defects or human errors and so on. Accordingly, in this study, based on a case study of an explosion accident in a polystyrene reactor in South Korea, the dis-charge capacity of hazardous substances during a runaway reaction is reviewed and a method for safely disposing of hazardous substances is proposed. Using an acceleration rate calorimeter, the maximum temperature rise rate during the polystyrene reaction was determined, and it was determined that 355,643 kg/h can flow during a runaway reaction. A 30-inch header size was then selected to consider maximum flow rate, and two 81.4 m2 heat exchangers were selected to completely condense the hazardous substances. As a result, the facilities at the workplace were configured to condense all hazardous substances and discharge them into the atmosphere. If this method is used, it is believed that the lives of workers can be protected by preventing fires and explosions in small and medium-sized chemical plants in which runaway reactions may occur.\",\"PeriodicalId\":12279,\"journal\":{\"name\":\"Fire\",\"volume\":\"47 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fire7070260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fire7070260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Safety Design Criteria for the Emergency Discharge of Hazardous Substances in Small and Medium-Sized Polystyrene Polymerization Batch Reactor Processes: Case Study of the South Korean Chemical Industry
In small and medium-sized chemical plants, explosions constantly occur owing to runaway reactions because of equipment defects or human errors and so on. Accordingly, in this study, based on a case study of an explosion accident in a polystyrene reactor in South Korea, the dis-charge capacity of hazardous substances during a runaway reaction is reviewed and a method for safely disposing of hazardous substances is proposed. Using an acceleration rate calorimeter, the maximum temperature rise rate during the polystyrene reaction was determined, and it was determined that 355,643 kg/h can flow during a runaway reaction. A 30-inch header size was then selected to consider maximum flow rate, and two 81.4 m2 heat exchangers were selected to completely condense the hazardous substances. As a result, the facilities at the workplace were configured to condense all hazardous substances and discharge them into the atmosphere. If this method is used, it is believed that the lives of workers can be protected by preventing fires and explosions in small and medium-sized chemical plants in which runaway reactions may occur.