{"title":"利用机器学习的农场级智能作物推荐框架","authors":"Amit Bhola, Prabhat Kumar","doi":"10.1007/s40745-024-00534-3","DOIUrl":null,"url":null,"abstract":"<div><p>Agriculture is the primary source of food, fuel, and raw materials and is vital to any country’s economy. Farmers, the backbone of agriculture, primarily rely on instinct to determine what crops to plant in any given season. They are comfortable following customary farming practices and standards and are oblivious to the fact that crop yield is highly dependent on current environmental and soil conditions. Crop recommendations involve multifaceted factors such as weather, soil quality, crop production, market demand, and prices, making it crucial for farmers to make well-informed decisions. An improper or imprudent crop recommendation can affect them, their families, and the entire agricultural sector. Modern technologies like artificial intelligence, machine learning, and data science have emerged as efficient solutions to combat issues like declining crop production and lower profits. This research proposes a Smart Crop Recommendation framework that leverages machine learning to empower farmers to make informed decisions about optimal crop selection. The framework consists of two phases: crop filtration and yield prediction. Crops are filtered in the first phase using an artificial neural network based on local input parameters. The second phase estimates yield for filtered crops, considering the season, farm area, and location data. The final recommendation provides farmers with crops aimed at maximizing profit. The remarkable 99.10% accuracy of the framework is demonstrated through experimentation using artificial neural networks and the 0.99 <span>\\(\\text {R}^{\\text {2}}\\)</span> error metric for the random forest. The uniqueness of this framework lies in its distinctive focus on the farm level and its consideration of the challenges and various agricultural features that change over time. The experimental results affirm the effectiveness of the framework, and its lightweight nature enhances its practicality, making it an efficient real-time recommendation solution.\n</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 1","pages":"117 - 140"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Farm-Level Smart Crop Recommendation Framework Using Machine Learning\",\"authors\":\"Amit Bhola, Prabhat Kumar\",\"doi\":\"10.1007/s40745-024-00534-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Agriculture is the primary source of food, fuel, and raw materials and is vital to any country’s economy. Farmers, the backbone of agriculture, primarily rely on instinct to determine what crops to plant in any given season. They are comfortable following customary farming practices and standards and are oblivious to the fact that crop yield is highly dependent on current environmental and soil conditions. Crop recommendations involve multifaceted factors such as weather, soil quality, crop production, market demand, and prices, making it crucial for farmers to make well-informed decisions. An improper or imprudent crop recommendation can affect them, their families, and the entire agricultural sector. Modern technologies like artificial intelligence, machine learning, and data science have emerged as efficient solutions to combat issues like declining crop production and lower profits. This research proposes a Smart Crop Recommendation framework that leverages machine learning to empower farmers to make informed decisions about optimal crop selection. The framework consists of two phases: crop filtration and yield prediction. Crops are filtered in the first phase using an artificial neural network based on local input parameters. The second phase estimates yield for filtered crops, considering the season, farm area, and location data. The final recommendation provides farmers with crops aimed at maximizing profit. The remarkable 99.10% accuracy of the framework is demonstrated through experimentation using artificial neural networks and the 0.99 <span>\\\\(\\\\text {R}^{\\\\text {2}}\\\\)</span> error metric for the random forest. The uniqueness of this framework lies in its distinctive focus on the farm level and its consideration of the challenges and various agricultural features that change over time. The experimental results affirm the effectiveness of the framework, and its lightweight nature enhances its practicality, making it an efficient real-time recommendation solution.\\n</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":\"12 1\",\"pages\":\"117 - 140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-024-00534-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00534-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
Farm-Level Smart Crop Recommendation Framework Using Machine Learning
Agriculture is the primary source of food, fuel, and raw materials and is vital to any country’s economy. Farmers, the backbone of agriculture, primarily rely on instinct to determine what crops to plant in any given season. They are comfortable following customary farming practices and standards and are oblivious to the fact that crop yield is highly dependent on current environmental and soil conditions. Crop recommendations involve multifaceted factors such as weather, soil quality, crop production, market demand, and prices, making it crucial for farmers to make well-informed decisions. An improper or imprudent crop recommendation can affect them, their families, and the entire agricultural sector. Modern technologies like artificial intelligence, machine learning, and data science have emerged as efficient solutions to combat issues like declining crop production and lower profits. This research proposes a Smart Crop Recommendation framework that leverages machine learning to empower farmers to make informed decisions about optimal crop selection. The framework consists of two phases: crop filtration and yield prediction. Crops are filtered in the first phase using an artificial neural network based on local input parameters. The second phase estimates yield for filtered crops, considering the season, farm area, and location data. The final recommendation provides farmers with crops aimed at maximizing profit. The remarkable 99.10% accuracy of the framework is demonstrated through experimentation using artificial neural networks and the 0.99 \(\text {R}^{\text {2}}\) error metric for the random forest. The uniqueness of this framework lies in its distinctive focus on the farm level and its consideration of the challenges and various agricultural features that change over time. The experimental results affirm the effectiveness of the framework, and its lightweight nature enhances its practicality, making it an efficient real-time recommendation solution.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.