Hong Liu, Han Xie, Zhen Wang, Xianling Wang, Donghang Chai
{"title":"通过快速确定性最大似然算法进行车载毫米波雷达的单次到达方向估计","authors":"Hong Liu, Han Xie, Zhen Wang, Xianling Wang, Donghang Chai","doi":"10.3390/wevj15070321","DOIUrl":null,"url":null,"abstract":"As one of the fundamental vehicular perception technologies, millimeter-wave radar’s accuracy in angle measurement affects the decision-making and control of vehicles. In order to enhance the accuracy and efficiency of the Direction of Arrival (DoA) estimation of radar systems, a super-resolution angle measurement strategy based on the Fast Deterministic Maximum Likelihood (FDML) algorithm is proposed in this paper. This strategy sequentially uses Digital Beamforming (DBF) and Deterministic Maximum Likelihood (DML) in the Field of View (FoV) to perform a rough search and precise search, respectively. In a simulation with a signal-to-noise ratio of 20 dB, FDML can accurately determine the target angle in just 16.8 ms, with a positioning error of less than 0.7010. DBF, the Iterative Adaptive Approach (IAA), DML, Fast Iterative Adaptive Approach (FIAA), and FDML are subjected to simulation with two targets, and their performance is compared in this paper. The results demonstrate that under the same angular resolution, FDML reduces computation time by 99.30% and angle measurement error by 87.17% compared with the angular measurement results of two targets. The FDML algorithm significantly improves computational efficiency while ensuring measurement performance. It provides more reliable technical support for autonomous vehicles and lays a solid foundation for the advancement of autonomous driving technology.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Snapshot Direction of Arrival Estimation for Vehicle-Mounted Millimeter-Wave Radar via Fast Deterministic Maximum Likelihood Algorithm\",\"authors\":\"Hong Liu, Han Xie, Zhen Wang, Xianling Wang, Donghang Chai\",\"doi\":\"10.3390/wevj15070321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the fundamental vehicular perception technologies, millimeter-wave radar’s accuracy in angle measurement affects the decision-making and control of vehicles. In order to enhance the accuracy and efficiency of the Direction of Arrival (DoA) estimation of radar systems, a super-resolution angle measurement strategy based on the Fast Deterministic Maximum Likelihood (FDML) algorithm is proposed in this paper. This strategy sequentially uses Digital Beamforming (DBF) and Deterministic Maximum Likelihood (DML) in the Field of View (FoV) to perform a rough search and precise search, respectively. In a simulation with a signal-to-noise ratio of 20 dB, FDML can accurately determine the target angle in just 16.8 ms, with a positioning error of less than 0.7010. DBF, the Iterative Adaptive Approach (IAA), DML, Fast Iterative Adaptive Approach (FIAA), and FDML are subjected to simulation with two targets, and their performance is compared in this paper. The results demonstrate that under the same angular resolution, FDML reduces computation time by 99.30% and angle measurement error by 87.17% compared with the angular measurement results of two targets. The FDML algorithm significantly improves computational efficiency while ensuring measurement performance. It provides more reliable technical support for autonomous vehicles and lays a solid foundation for the advancement of autonomous driving technology.\",\"PeriodicalId\":38979,\"journal\":{\"name\":\"World Electric Vehicle Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Electric Vehicle Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/wevj15070321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj15070321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Single-Snapshot Direction of Arrival Estimation for Vehicle-Mounted Millimeter-Wave Radar via Fast Deterministic Maximum Likelihood Algorithm
As one of the fundamental vehicular perception technologies, millimeter-wave radar’s accuracy in angle measurement affects the decision-making and control of vehicles. In order to enhance the accuracy and efficiency of the Direction of Arrival (DoA) estimation of radar systems, a super-resolution angle measurement strategy based on the Fast Deterministic Maximum Likelihood (FDML) algorithm is proposed in this paper. This strategy sequentially uses Digital Beamforming (DBF) and Deterministic Maximum Likelihood (DML) in the Field of View (FoV) to perform a rough search and precise search, respectively. In a simulation with a signal-to-noise ratio of 20 dB, FDML can accurately determine the target angle in just 16.8 ms, with a positioning error of less than 0.7010. DBF, the Iterative Adaptive Approach (IAA), DML, Fast Iterative Adaptive Approach (FIAA), and FDML are subjected to simulation with two targets, and their performance is compared in this paper. The results demonstrate that under the same angular resolution, FDML reduces computation time by 99.30% and angle measurement error by 87.17% compared with the angular measurement results of two targets. The FDML algorithm significantly improves computational efficiency while ensuring measurement performance. It provides more reliable technical support for autonomous vehicles and lays a solid foundation for the advancement of autonomous driving technology.