{"title":"基于相同总低热值的预混乙醇比例的燃烧阶段对反应控制压燃式发动机废气排放的形成和氧化的影响","authors":"S. Min, Hyunkyu Suh","doi":"10.3390/fire7070258","DOIUrl":null,"url":null,"abstract":"A compression ignition engine generates power by using the auto-ignition characteristics of fuel injected into the cylinder. Although it has high fuel efficiency, it discharges a lot of exhaust emissions such as NOX and PM. Therefore, there is much ongoing research aiming to reduce the exhaust emissions by using the technologies applied in this regard, such as PCCI, HCCI, etc. However, these methods still discharge large exhaust emissions. The RCCI method, which combines the spark ignition method and compression ignition method, is attracting attention. So, in this work, the objective of this study is to numerically investigate the effect of combustion phase according to the premixed ethanol ratio based on the same total heating value in-cylinder by changing the initial air composition on the formation and oxidation of exhaust emissions in the RCCI engine. The heating value of the premixed ethanol ratio varied from 0% to 40% based on the same total lower heating value in-cylinder in steps of 10%. It was assumed that the ethanol introduced into the cylinder through the premixing chamber was evaporated, and the initial air composition in the cylinder was changed and set. It was revealed that when the premixed ratio based on the same total lower heating value was increased, the introduced fuel amount into the crevice volume with advancing the start of energizing timing was decreased, which increased the peak cylinder pressure. In addition, the ignition delay was also longer due to the low cylinder temperature by the evaporation latent heat of the ethanol, which reduced the compression loss, so the IMEP value was increased. The rich equivalence ratio had a narrow distribution in the cylinder, which caused a reduction in cylinder temperature, so the NO formation amount was reduced. The ISCO value increased the increase in premixed ethanol ratio based on the same total lower heating value in-cylinder because the flame propagation of ethanol by combustion of diesel did not work well, and the CO formed by combustion was slowly oxidized due to the cylinder’s low temperature as a result of the evaporation latent heat of ethanol. From these results, the optimal operating conditions for simultaneously reducing the exhaust emissions and improving the combustion performance were judged such that the start of energizing timing was BTDC 23 deg, and the premixed ethanol ratio based on the same total lower heating value in-cylinder was 40%.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"124 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Combustion Phase According to the Premixed Ethanol Ratio Based on the Same Total Lower Heating Value on the Formation and Oxidation of Exhaust Emissions in a Reactivity-Controlled Compression Ignition Engine\",\"authors\":\"S. Min, Hyunkyu Suh\",\"doi\":\"10.3390/fire7070258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compression ignition engine generates power by using the auto-ignition characteristics of fuel injected into the cylinder. Although it has high fuel efficiency, it discharges a lot of exhaust emissions such as NOX and PM. Therefore, there is much ongoing research aiming to reduce the exhaust emissions by using the technologies applied in this regard, such as PCCI, HCCI, etc. However, these methods still discharge large exhaust emissions. The RCCI method, which combines the spark ignition method and compression ignition method, is attracting attention. So, in this work, the objective of this study is to numerically investigate the effect of combustion phase according to the premixed ethanol ratio based on the same total heating value in-cylinder by changing the initial air composition on the formation and oxidation of exhaust emissions in the RCCI engine. The heating value of the premixed ethanol ratio varied from 0% to 40% based on the same total lower heating value in-cylinder in steps of 10%. It was assumed that the ethanol introduced into the cylinder through the premixing chamber was evaporated, and the initial air composition in the cylinder was changed and set. It was revealed that when the premixed ratio based on the same total lower heating value was increased, the introduced fuel amount into the crevice volume with advancing the start of energizing timing was decreased, which increased the peak cylinder pressure. In addition, the ignition delay was also longer due to the low cylinder temperature by the evaporation latent heat of the ethanol, which reduced the compression loss, so the IMEP value was increased. The rich equivalence ratio had a narrow distribution in the cylinder, which caused a reduction in cylinder temperature, so the NO formation amount was reduced. The ISCO value increased the increase in premixed ethanol ratio based on the same total lower heating value in-cylinder because the flame propagation of ethanol by combustion of diesel did not work well, and the CO formed by combustion was slowly oxidized due to the cylinder’s low temperature as a result of the evaporation latent heat of ethanol. From these results, the optimal operating conditions for simultaneously reducing the exhaust emissions and improving the combustion performance were judged such that the start of energizing timing was BTDC 23 deg, and the premixed ethanol ratio based on the same total lower heating value in-cylinder was 40%.\",\"PeriodicalId\":12279,\"journal\":{\"name\":\"Fire\",\"volume\":\"124 25\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fire7070258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fire7070258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Effect of Combustion Phase According to the Premixed Ethanol Ratio Based on the Same Total Lower Heating Value on the Formation and Oxidation of Exhaust Emissions in a Reactivity-Controlled Compression Ignition Engine
A compression ignition engine generates power by using the auto-ignition characteristics of fuel injected into the cylinder. Although it has high fuel efficiency, it discharges a lot of exhaust emissions such as NOX and PM. Therefore, there is much ongoing research aiming to reduce the exhaust emissions by using the technologies applied in this regard, such as PCCI, HCCI, etc. However, these methods still discharge large exhaust emissions. The RCCI method, which combines the spark ignition method and compression ignition method, is attracting attention. So, in this work, the objective of this study is to numerically investigate the effect of combustion phase according to the premixed ethanol ratio based on the same total heating value in-cylinder by changing the initial air composition on the formation and oxidation of exhaust emissions in the RCCI engine. The heating value of the premixed ethanol ratio varied from 0% to 40% based on the same total lower heating value in-cylinder in steps of 10%. It was assumed that the ethanol introduced into the cylinder through the premixing chamber was evaporated, and the initial air composition in the cylinder was changed and set. It was revealed that when the premixed ratio based on the same total lower heating value was increased, the introduced fuel amount into the crevice volume with advancing the start of energizing timing was decreased, which increased the peak cylinder pressure. In addition, the ignition delay was also longer due to the low cylinder temperature by the evaporation latent heat of the ethanol, which reduced the compression loss, so the IMEP value was increased. The rich equivalence ratio had a narrow distribution in the cylinder, which caused a reduction in cylinder temperature, so the NO formation amount was reduced. The ISCO value increased the increase in premixed ethanol ratio based on the same total lower heating value in-cylinder because the flame propagation of ethanol by combustion of diesel did not work well, and the CO formed by combustion was slowly oxidized due to the cylinder’s low temperature as a result of the evaporation latent heat of ethanol. From these results, the optimal operating conditions for simultaneously reducing the exhaust emissions and improving the combustion performance were judged such that the start of energizing timing was BTDC 23 deg, and the premixed ethanol ratio based on the same total lower heating value in-cylinder was 40%.