{"title":"钕铁硼磁体上镍铜合金涂层的腐蚀行为和强化机制","authors":"Jiaxin Long, Xuefeng Xie, Yuxin Cai, Shuwei Zhong, Sangen Luo, Weilong Zhang, Munan Yang","doi":"10.1680/jsuin.24.00025","DOIUrl":null,"url":null,"abstract":"In this paper, the Pulse-Reverse Current (PRC) electroplating technique was utilized to deposit Ni-Cu alloy coatings on the surface of Nd-Fe-B magnets. Compared with the Ni coating, the corrosion resistance of the Ni-Cu alloy coating has been significantly improved, with the corrosion potential Ecorr and the corrosion current density Icorr of -246 mV and 0.9 μA·cm-2, respectively. The results show that alloying can effectively prolong the incubation period of pitting nucleation and improve the self-healing ability of coating. The structure and microstructure of the coating show that the surface of the Ni-Cu coating is flat and the grains preferentially grow along the (111) close-packed surface, which also makes the coating have higher densification and significantly reduces the number of self-corrosion sites and corrosion tendency of the coating. The lower binding energy Cu2O produced by Ni-Cu coatings at the initial corrosion stage can reduce the formation of metal cation holes and prolong the incubation period of pitting corrosion. After pitting formation, the corrosion products Cu2O and Cu2(OH)3Cl of Cu in the pitting hole have a certain hindrance to corrosion and are conducive to promoting passive reconstruction, which is an important reason for the Ni-Cu alloy coating shows higher self-healing ability and higher corrosion resistance.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion behavior and strengthening mechanism of Ni-Cu alloy coating on Nd-Fe-B magnets\",\"authors\":\"Jiaxin Long, Xuefeng Xie, Yuxin Cai, Shuwei Zhong, Sangen Luo, Weilong Zhang, Munan Yang\",\"doi\":\"10.1680/jsuin.24.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Pulse-Reverse Current (PRC) electroplating technique was utilized to deposit Ni-Cu alloy coatings on the surface of Nd-Fe-B magnets. Compared with the Ni coating, the corrosion resistance of the Ni-Cu alloy coating has been significantly improved, with the corrosion potential Ecorr and the corrosion current density Icorr of -246 mV and 0.9 μA·cm-2, respectively. The results show that alloying can effectively prolong the incubation period of pitting nucleation and improve the self-healing ability of coating. The structure and microstructure of the coating show that the surface of the Ni-Cu coating is flat and the grains preferentially grow along the (111) close-packed surface, which also makes the coating have higher densification and significantly reduces the number of self-corrosion sites and corrosion tendency of the coating. The lower binding energy Cu2O produced by Ni-Cu coatings at the initial corrosion stage can reduce the formation of metal cation holes and prolong the incubation period of pitting corrosion. After pitting formation, the corrosion products Cu2O and Cu2(OH)3Cl of Cu in the pitting hole have a certain hindrance to corrosion and are conducive to promoting passive reconstruction, which is an important reason for the Ni-Cu alloy coating shows higher self-healing ability and higher corrosion resistance.\",\"PeriodicalId\":22032,\"journal\":{\"name\":\"Surface Innovations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Innovations\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jsuin.24.00025\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.24.00025","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Corrosion behavior and strengthening mechanism of Ni-Cu alloy coating on Nd-Fe-B magnets
In this paper, the Pulse-Reverse Current (PRC) electroplating technique was utilized to deposit Ni-Cu alloy coatings on the surface of Nd-Fe-B magnets. Compared with the Ni coating, the corrosion resistance of the Ni-Cu alloy coating has been significantly improved, with the corrosion potential Ecorr and the corrosion current density Icorr of -246 mV and 0.9 μA·cm-2, respectively. The results show that alloying can effectively prolong the incubation period of pitting nucleation and improve the self-healing ability of coating. The structure and microstructure of the coating show that the surface of the Ni-Cu coating is flat and the grains preferentially grow along the (111) close-packed surface, which also makes the coating have higher densification and significantly reduces the number of self-corrosion sites and corrosion tendency of the coating. The lower binding energy Cu2O produced by Ni-Cu coatings at the initial corrosion stage can reduce the formation of metal cation holes and prolong the incubation period of pitting corrosion. After pitting formation, the corrosion products Cu2O and Cu2(OH)3Cl of Cu in the pitting hole have a certain hindrance to corrosion and are conducive to promoting passive reconstruction, which is an important reason for the Ni-Cu alloy coating shows higher self-healing ability and higher corrosion resistance.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.