Mingsheng Li, Yulin Yan, Lin Tian, Xingzheng Chen, Fanyi Liu
{"title":"河堤割草机轮廓铣挖头的设计与实验","authors":"Mingsheng Li, Yulin Yan, Lin Tian, Xingzheng Chen, Fanyi Liu","doi":"10.3390/agriculture14071188","DOIUrl":null,"url":null,"abstract":"Drawing upon advancements in profiling technology, this paper presents an innovative lateral profiling mechanism for the header to improve mowing efficiency and the ability to adapt to terrain for river dike mowers. It delves into the imitation principle and forced situations. Furthermore, a novel lawn protection boot design has been introduced, capable of adjusting mowing heights with swift transitions. The structural integrity of this boot has been optimized through rigorous finite element analysis. Meanwhile, the rolling shaft and cutter have been carefully selected and designed, with a mechanical model of the cutter established to examine its motion and force characteristics. In addition, hydraulic circuits tailored to fulfill the required functions of the header have been devised, and key hydraulic components have been appropriately selected. Key components are subjected to finite element analysis by using ANSYS to verify and optimize their structural strength. Prototype testing and field trials are subsequently conducted, revealing that the mower can achieve a mowing speed of 0.85 m/s on flat ground and a 25-degree slope, thereby fulfilling the design requirements for mowing speed. The imitation mechanism adapts to different embankment terrains. Notably, the lawn protection boots offer adjustable mowing heights of 10.4 cm, 12 cm, and 14 cm, respectively, with a height adjustment range of approximately 2 cm for each position, meeting the requirement for adjusting mowing heights. In addition, the transition time between different positions of the lawn protection boots is less than 5 min, achieving rapid switching and operational efficiency. Furthermore, a mowing uniformity test is conducted by using a header equipped with profiling functionality. The results reveal that the mowing effect of the profiling header meets design requirements, demonstrating its effectiveness and reliability in agricultural applications.","PeriodicalId":7447,"journal":{"name":"Agriculture","volume":"117 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Experiment of the Profiling Header of River Dike Mower\",\"authors\":\"Mingsheng Li, Yulin Yan, Lin Tian, Xingzheng Chen, Fanyi Liu\",\"doi\":\"10.3390/agriculture14071188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drawing upon advancements in profiling technology, this paper presents an innovative lateral profiling mechanism for the header to improve mowing efficiency and the ability to adapt to terrain for river dike mowers. It delves into the imitation principle and forced situations. Furthermore, a novel lawn protection boot design has been introduced, capable of adjusting mowing heights with swift transitions. The structural integrity of this boot has been optimized through rigorous finite element analysis. Meanwhile, the rolling shaft and cutter have been carefully selected and designed, with a mechanical model of the cutter established to examine its motion and force characteristics. In addition, hydraulic circuits tailored to fulfill the required functions of the header have been devised, and key hydraulic components have been appropriately selected. Key components are subjected to finite element analysis by using ANSYS to verify and optimize their structural strength. Prototype testing and field trials are subsequently conducted, revealing that the mower can achieve a mowing speed of 0.85 m/s on flat ground and a 25-degree slope, thereby fulfilling the design requirements for mowing speed. The imitation mechanism adapts to different embankment terrains. Notably, the lawn protection boots offer adjustable mowing heights of 10.4 cm, 12 cm, and 14 cm, respectively, with a height adjustment range of approximately 2 cm for each position, meeting the requirement for adjusting mowing heights. In addition, the transition time between different positions of the lawn protection boots is less than 5 min, achieving rapid switching and operational efficiency. Furthermore, a mowing uniformity test is conducted by using a header equipped with profiling functionality. The results reveal that the mowing effect of the profiling header meets design requirements, demonstrating its effectiveness and reliability in agricultural applications.\",\"PeriodicalId\":7447,\"journal\":{\"name\":\"Agriculture\",\"volume\":\"117 31\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriculture14071188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriculture14071188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Design and Experiment of the Profiling Header of River Dike Mower
Drawing upon advancements in profiling technology, this paper presents an innovative lateral profiling mechanism for the header to improve mowing efficiency and the ability to adapt to terrain for river dike mowers. It delves into the imitation principle and forced situations. Furthermore, a novel lawn protection boot design has been introduced, capable of adjusting mowing heights with swift transitions. The structural integrity of this boot has been optimized through rigorous finite element analysis. Meanwhile, the rolling shaft and cutter have been carefully selected and designed, with a mechanical model of the cutter established to examine its motion and force characteristics. In addition, hydraulic circuits tailored to fulfill the required functions of the header have been devised, and key hydraulic components have been appropriately selected. Key components are subjected to finite element analysis by using ANSYS to verify and optimize their structural strength. Prototype testing and field trials are subsequently conducted, revealing that the mower can achieve a mowing speed of 0.85 m/s on flat ground and a 25-degree slope, thereby fulfilling the design requirements for mowing speed. The imitation mechanism adapts to different embankment terrains. Notably, the lawn protection boots offer adjustable mowing heights of 10.4 cm, 12 cm, and 14 cm, respectively, with a height adjustment range of approximately 2 cm for each position, meeting the requirement for adjusting mowing heights. In addition, the transition time between different positions of the lawn protection boots is less than 5 min, achieving rapid switching and operational efficiency. Furthermore, a mowing uniformity test is conducted by using a header equipped with profiling functionality. The results reveal that the mowing effect of the profiling header meets design requirements, demonstrating its effectiveness and reliability in agricultural applications.
AgricultureAgricultural and Biological Sciences-Horticulture
CiteScore
1.90
自引率
0.00%
发文量
4
审稿时长
11 weeks
期刊介绍:
The Agriculture (Poľnohospodárstvo) is a peer-reviewed international journal that publishes mainly original research papers. The journal examines various aspects of research and is devoted to the publication of papers dealing with the following subjects: plant nutrition, protection, breeding, genetics and biotechnology, quality of plant products, grassland, mountain agriculture and environment, soil science and conservation, mechanization and economics of plant production and other spheres of plant science. Journal is published 4 times per year.