{"title":"基于多策略精英学习的全局优化混合算法","authors":"Xuhua Zhao, Chao Yang, Donglin Zhu, Yujia Liu","doi":"10.3390/electronics13142839","DOIUrl":null,"url":null,"abstract":"To improve the performance of the sparrow search algorithm in solving complex optimization problems, this study proposes a novel variant called the Improved Beetle Antennae Search-Based Sparrow Search Algorithm (IBSSA). A new elite dynamic opposite learning strategy is proposed in the population initialization stage to enhance population diversity. In the update stage of the discoverer, a staged inertia weight guidance mechanism is used to improve the update formula of the discoverer, promote the information exchange between individuals, and improve the algorithm’s ability to optimize on a global level. After the follower’s position is updated, the logarithmic spiral opposition-based learning strategy is introduced to disturb the initial position of the individual in the beetle antennae search algorithm to obtain a more purposeful solution. To address the issue of decreased diversity and susceptibility to local optima in the sparrow population during later stages, the improved beetle antennae search algorithm and sparrow search algorithm are combined using a greedy strategy. This integration aims to improve convergence accuracy. On 20 benchmark test functions and the CEC2017 Test suite, IBSSA performed better than other advanced algorithms. Moreover, six engineering optimization problems were used to demonstrate the improved algorithm’s effectiveness and feasibility.","PeriodicalId":504598,"journal":{"name":"Electronics","volume":" 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Algorithm Based on Multi-Strategy Elite Learning for Global Optimization\",\"authors\":\"Xuhua Zhao, Chao Yang, Donglin Zhu, Yujia Liu\",\"doi\":\"10.3390/electronics13142839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the performance of the sparrow search algorithm in solving complex optimization problems, this study proposes a novel variant called the Improved Beetle Antennae Search-Based Sparrow Search Algorithm (IBSSA). A new elite dynamic opposite learning strategy is proposed in the population initialization stage to enhance population diversity. In the update stage of the discoverer, a staged inertia weight guidance mechanism is used to improve the update formula of the discoverer, promote the information exchange between individuals, and improve the algorithm’s ability to optimize on a global level. After the follower’s position is updated, the logarithmic spiral opposition-based learning strategy is introduced to disturb the initial position of the individual in the beetle antennae search algorithm to obtain a more purposeful solution. To address the issue of decreased diversity and susceptibility to local optima in the sparrow population during later stages, the improved beetle antennae search algorithm and sparrow search algorithm are combined using a greedy strategy. This integration aims to improve convergence accuracy. On 20 benchmark test functions and the CEC2017 Test suite, IBSSA performed better than other advanced algorithms. Moreover, six engineering optimization problems were used to demonstrate the improved algorithm’s effectiveness and feasibility.\",\"PeriodicalId\":504598,\"journal\":{\"name\":\"Electronics\",\"volume\":\" 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13142839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronics13142839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hybrid Algorithm Based on Multi-Strategy Elite Learning for Global Optimization
To improve the performance of the sparrow search algorithm in solving complex optimization problems, this study proposes a novel variant called the Improved Beetle Antennae Search-Based Sparrow Search Algorithm (IBSSA). A new elite dynamic opposite learning strategy is proposed in the population initialization stage to enhance population diversity. In the update stage of the discoverer, a staged inertia weight guidance mechanism is used to improve the update formula of the discoverer, promote the information exchange between individuals, and improve the algorithm’s ability to optimize on a global level. After the follower’s position is updated, the logarithmic spiral opposition-based learning strategy is introduced to disturb the initial position of the individual in the beetle antennae search algorithm to obtain a more purposeful solution. To address the issue of decreased diversity and susceptibility to local optima in the sparrow population during later stages, the improved beetle antennae search algorithm and sparrow search algorithm are combined using a greedy strategy. This integration aims to improve convergence accuracy. On 20 benchmark test functions and the CEC2017 Test suite, IBSSA performed better than other advanced algorithms. Moreover, six engineering optimization problems were used to demonstrate the improved algorithm’s effectiveness and feasibility.