Oussama Chaib, Lee Weller, Anthony Giles, Steve Morris, Benjamin A. O. Williams, Simone Hochgreb
{"title":"利用激光诱导光栅光谱法测量高压下漩涡稳定氢气-空气扩散火焰的空间温度","authors":"Oussama Chaib, Lee Weller, Anthony Giles, Steve Morris, Benjamin A. O. Williams, Simone Hochgreb","doi":"10.1115/1.4065996","DOIUrl":null,"url":null,"abstract":"\n Laser-induced grating spectroscopy (LIGS) is applied, for the first time, to a swirling non-premixed hydrogen-air flame in a high-pressure combustion facility. A portable LIGS unit is used to probe 35 different axial and radial locations in the flame and a new conditioned processing approach based on laminar flame simulation is introduced to infer temperatures from instantaneous LIGS spectra. Thermal and electrostrictive frequencies are used to produce a spatial map of temperatures in the combustor. Temperatures up to 2500 K are measured in this work, which constitute the highest temperatures ever measured using LIGS. Challenges associated with the deployment of the technique in turbulent stratified hydrogen flames are discussed, as are potential measures to overcome them, including the use of data-driven clustering techniques.","PeriodicalId":508252,"journal":{"name":"Journal of Engineering for Gas Turbines and Power","volume":" 52","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Temperature Measurements in a Swirl-Stabilized Hydrogen-Air Diffusion Flame At Elevated Pressure Using Laser-Induced Grating Spectroscopy\",\"authors\":\"Oussama Chaib, Lee Weller, Anthony Giles, Steve Morris, Benjamin A. O. Williams, Simone Hochgreb\",\"doi\":\"10.1115/1.4065996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Laser-induced grating spectroscopy (LIGS) is applied, for the first time, to a swirling non-premixed hydrogen-air flame in a high-pressure combustion facility. A portable LIGS unit is used to probe 35 different axial and radial locations in the flame and a new conditioned processing approach based on laminar flame simulation is introduced to infer temperatures from instantaneous LIGS spectra. Thermal and electrostrictive frequencies are used to produce a spatial map of temperatures in the combustor. Temperatures up to 2500 K are measured in this work, which constitute the highest temperatures ever measured using LIGS. Challenges associated with the deployment of the technique in turbulent stratified hydrogen flames are discussed, as are potential measures to overcome them, including the use of data-driven clustering techniques.\",\"PeriodicalId\":508252,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power\",\"volume\":\" 52\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatial Temperature Measurements in a Swirl-Stabilized Hydrogen-Air Diffusion Flame At Elevated Pressure Using Laser-Induced Grating Spectroscopy
Laser-induced grating spectroscopy (LIGS) is applied, for the first time, to a swirling non-premixed hydrogen-air flame in a high-pressure combustion facility. A portable LIGS unit is used to probe 35 different axial and radial locations in the flame and a new conditioned processing approach based on laminar flame simulation is introduced to infer temperatures from instantaneous LIGS spectra. Thermal and electrostrictive frequencies are used to produce a spatial map of temperatures in the combustor. Temperatures up to 2500 K are measured in this work, which constitute the highest temperatures ever measured using LIGS. Challenges associated with the deployment of the technique in turbulent stratified hydrogen flames are discussed, as are potential measures to overcome them, including the use of data-driven clustering techniques.