Si(111)-α-√3×√3-Au上稳定双钌中的稳健大间隙量子自旋霍尔态

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY 2D Materials Pub Date : 2024-07-18 DOI:10.1088/2053-1583/ad64e4
B. M. Llona, Hsin-Lei Chou, Liang-Wei Lan, Shih-Yu Wu, Chia-Hsiu Hsu, F. Chuang, Hsin Lin, Chien-Cheng Kuo
{"title":"Si(111)-α-√3×√3-Au上稳定双钌中的稳健大间隙量子自旋霍尔态","authors":"B. M. Llona, Hsin-Lei Chou, Liang-Wei Lan, Shih-Yu Wu, Chia-Hsiu Hsu, F. Chuang, Hsin Lin, Chien-Cheng Kuo","doi":"10.1088/2053-1583/ad64e4","DOIUrl":null,"url":null,"abstract":"\n Bismuthene is a promising large-gap two-dimensional topological material with potential applications in quantum devices. However, fabricating a stable bismuthene on a substrate that preserves its edge states and large energy gap at room temperature has been challenging. In this study, we successfully stabilized bismuthene on the 2D electron gas Si(111)-α-√3×√3-Au surface despite its delicate atomic structures, enabling direct access to its quantum spin Hall states. Scanning tunneling microscopy (STM) with localized dI/dV mapping on in-situ prepared structures revealed that the bismuthene surface exhibits a stable, shallow-buckled, insulative interior and an almost planar metallic edge. We found a 0.75 eV-bandgap throughout the interior and a closing gap at the island’s boundary. By using island-based differential conductance mapping, we identified localized edge states and the Dirac point at an energy of −0.10 eV within the bandgap. These results support the 2D-TI nature of bismuthene in Au / Si(111), paving the way for the development of bismuthene-based quantum devices.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust large-gap quantum spin Hall states in stabilized bismuthene on Si(111)-α-√3×√3-Au\",\"authors\":\"B. M. Llona, Hsin-Lei Chou, Liang-Wei Lan, Shih-Yu Wu, Chia-Hsiu Hsu, F. Chuang, Hsin Lin, Chien-Cheng Kuo\",\"doi\":\"10.1088/2053-1583/ad64e4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Bismuthene is a promising large-gap two-dimensional topological material with potential applications in quantum devices. However, fabricating a stable bismuthene on a substrate that preserves its edge states and large energy gap at room temperature has been challenging. In this study, we successfully stabilized bismuthene on the 2D electron gas Si(111)-α-√3×√3-Au surface despite its delicate atomic structures, enabling direct access to its quantum spin Hall states. Scanning tunneling microscopy (STM) with localized dI/dV mapping on in-situ prepared structures revealed that the bismuthene surface exhibits a stable, shallow-buckled, insulative interior and an almost planar metallic edge. We found a 0.75 eV-bandgap throughout the interior and a closing gap at the island’s boundary. By using island-based differential conductance mapping, we identified localized edge states and the Dirac point at an energy of −0.10 eV within the bandgap. These results support the 2D-TI nature of bismuthene in Au / Si(111), paving the way for the development of bismuthene-based quantum devices.\",\"PeriodicalId\":6812,\"journal\":{\"name\":\"2D Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2D Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1583/ad64e4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad64e4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

双钌是一种前景广阔的大间隙二维拓扑材料,有望应用于量子器件。然而,要在基底上制备稳定的双钌,并在室温下保持其边缘态和大能隙,一直是个挑战。在本研究中,我们成功地将双钌稳定在二维电子气 Si(111)-α-√3×√3-Au 表面上,尽管其原子结构十分微妙,但仍能直接进入其量子自旋霍尔态。对原位制备的结构进行局部 dI/dV 映像扫描隧道显微镜 (STM) 扫描后发现,双钌表面呈现出稳定、浅褶皱、绝缘的内部和几乎平面的金属边缘。我们发现,整个内部的带隙为 0.75 eV,而在岛的边界处,带隙正在缩小。通过使用基于岛的微分电导图,我们确定了局部边缘态以及带隙内能量为 -0.10 eV 的狄拉克点。这些结果支持了金/硅(111)中双钌的二维-三态(2D-TI)性质,为开发基于双钌的量子器件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust large-gap quantum spin Hall states in stabilized bismuthene on Si(111)-α-√3×√3-Au
Bismuthene is a promising large-gap two-dimensional topological material with potential applications in quantum devices. However, fabricating a stable bismuthene on a substrate that preserves its edge states and large energy gap at room temperature has been challenging. In this study, we successfully stabilized bismuthene on the 2D electron gas Si(111)-α-√3×√3-Au surface despite its delicate atomic structures, enabling direct access to its quantum spin Hall states. Scanning tunneling microscopy (STM) with localized dI/dV mapping on in-situ prepared structures revealed that the bismuthene surface exhibits a stable, shallow-buckled, insulative interior and an almost planar metallic edge. We found a 0.75 eV-bandgap throughout the interior and a closing gap at the island’s boundary. By using island-based differential conductance mapping, we identified localized edge states and the Dirac point at an energy of −0.10 eV within the bandgap. These results support the 2D-TI nature of bismuthene in Au / Si(111), paving the way for the development of bismuthene-based quantum devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
2D Materials
2D Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
10.70
自引率
5.50%
发文量
138
审稿时长
1.5 months
期刊介绍: 2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.
期刊最新文献
Constructing three-dimensional GO/CNT@NMP aerogels towards primary lithium metal batteries Two-dimensional Janus MXTe (M = Hf, Zr; X = S, Se) piezoelectrocatalysts: a comprehensive investigation of its electronic, synthesis feasibility, electric polarization, and hydrogen evolution reaction activity The future of Xenes beyond graphene: challenges and perspective Soft-carbon-tuned hard carbon anode for ultrahigh-rate sodium storage Multiscale computational modeling techniques in study and design of 2D materials: recent advances, challenges, and opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1