使用多孔芯材的混合铝铸件研究

IF 0.6 Q4 METALLURGY & METALLURGICAL ENGINEERING Archives of Foundry Engineering Pub Date : 2024-07-18 DOI:10.24425/afe.2024.151286
M. Brůna, M. Medňanský, P. Oslanec
{"title":"使用多孔芯材的混合铝铸件研究","authors":"M. Brůna, M. Medňanský, P. Oslanec","doi":"10.24425/afe.2024.151286","DOIUrl":null,"url":null,"abstract":"The paper focuses on the research of hybrid aluminium castings produced by overcasting technology. This is an advanced technology for ensuring the lightness of castings by using the principle of overcasting a core with a porous cellular structure produced by foaming. Process parameters in the foaming phase of the material have a great influence on the resulting porous structure. The article focuses on controlling the influence of pressure during the foaming process on the resulting porosity and evaluating by X-ray tomograph and measuring the relative density. Variants using an initial pressure of 0.3 MPa appear to be the most satisfactory. The challenge of this technology is to ensure adequate bonding of the metals at the interface between the porous core and the solidified metal without penetrating the coating layer. For this reason, the surface treatment of foamed cores with various etchants has been proposed to disrupt the oxide layer on their surface. Macrographs of the uncoated sample and samples etched with 0.5% HF and 10% H3PO4 demonstrated the need for core surface treatment to prevent liquid metal penetration. EDX analysis confirmed the presence of AlPO4 at the core/casting interface in the treated sample.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research of Hybrid Aluminium Castings with the Use of Porous Cores\",\"authors\":\"M. Brůna, M. Medňanský, P. Oslanec\",\"doi\":\"10.24425/afe.2024.151286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper focuses on the research of hybrid aluminium castings produced by overcasting technology. This is an advanced technology for ensuring the lightness of castings by using the principle of overcasting a core with a porous cellular structure produced by foaming. Process parameters in the foaming phase of the material have a great influence on the resulting porous structure. The article focuses on controlling the influence of pressure during the foaming process on the resulting porosity and evaluating by X-ray tomograph and measuring the relative density. Variants using an initial pressure of 0.3 MPa appear to be the most satisfactory. The challenge of this technology is to ensure adequate bonding of the metals at the interface between the porous core and the solidified metal without penetrating the coating layer. For this reason, the surface treatment of foamed cores with various etchants has been proposed to disrupt the oxide layer on their surface. Macrographs of the uncoated sample and samples etched with 0.5% HF and 10% H3PO4 demonstrated the need for core surface treatment to prevent liquid metal penetration. EDX analysis confirmed the presence of AlPO4 at the core/casting interface in the treated sample.\",\"PeriodicalId\":8301,\"journal\":{\"name\":\"Archives of Foundry Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Foundry Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/afe.2024.151286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/afe.2024.151286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文重点研究了利用浇铸技术生产的混合铝铸件。这是一种确保铸件轻量化的先进技术,其原理是利用发泡产生的多孔蜂窝结构包覆芯材。材料发泡阶段的工艺参数对所产生的多孔结构有很大影响。文章的重点是控制发泡过程中的压力对所产生的孔隙率的影响,并通过 X 射线断层扫描和测量相对密度进行评估。使用 0.3 兆帕初始压力的方案似乎最令人满意。这项技术的难点在于如何在不穿透涂层的情况下,确保多孔内核与凝固金属之间的界面充分粘合。因此,有人建议用各种蚀刻剂对发泡芯材进行表面处理,以破坏其表面的氧化层。未涂层样品和用 0.5% HF 和 10% H3PO4 蚀刻过的样品的宏观照片显示,需要对芯材表面进行处理,以防止液态金属渗透。EDX 分析证实,在经过处理的样品中,型芯/铸件界面上存在 AlPO4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research of Hybrid Aluminium Castings with the Use of Porous Cores
The paper focuses on the research of hybrid aluminium castings produced by overcasting technology. This is an advanced technology for ensuring the lightness of castings by using the principle of overcasting a core with a porous cellular structure produced by foaming. Process parameters in the foaming phase of the material have a great influence on the resulting porous structure. The article focuses on controlling the influence of pressure during the foaming process on the resulting porosity and evaluating by X-ray tomograph and measuring the relative density. Variants using an initial pressure of 0.3 MPa appear to be the most satisfactory. The challenge of this technology is to ensure adequate bonding of the metals at the interface between the porous core and the solidified metal without penetrating the coating layer. For this reason, the surface treatment of foamed cores with various etchants has been proposed to disrupt the oxide layer on their surface. Macrographs of the uncoated sample and samples etched with 0.5% HF and 10% H3PO4 demonstrated the need for core surface treatment to prevent liquid metal penetration. EDX analysis confirmed the presence of AlPO4 at the core/casting interface in the treated sample.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Foundry Engineering
Archives of Foundry Engineering METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.10
自引率
16.70%
发文量
0
期刊介绍: Thematic scope includes scientific issues of foundry industry: Theoretical Aspects of Casting Processes, Innovative Foundry Technologies and Materials, Foundry Processes Computer Aiding, Mechanization, Automation and Robotics in Foundry, Transport Systems in Foundry, Castings Quality Management, Environmental Protection. Why subscribe and read
期刊最新文献
Casting Production in Poland Versus European Trends in 21st Century Effect of Composition and Pouring Temperature of Cu-Sn on Fluidity and Mechanical Properties of Investment Casting Kinetic Model for the Decomposition Rate of the Binder in a Foundry Sand Application Abrasive Wear Resistance of Nodular Cast Iron After Selected Surface Heat and Thermochemical Treatment Processes Comparison of the Mechanical Properties of Ductile Cast Iron Intended for Gas Gate Valves with Nickel Cast Iron with an Austenitic Matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1