Rodrigo César de Vasconcelos dos Santos, Tirzah Moreira Siqueira, Mauricio Fornalski Soares, Rômulo Félix Nunes, Luís Carlos Timm
{"title":"绘制流域尺度饱和土壤导水性空间变异图的序列高斯模拟法","authors":"Rodrigo César de Vasconcelos dos Santos, Tirzah Moreira Siqueira, Mauricio Fornalski Soares, Rômulo Félix Nunes, Luís Carlos Timm","doi":"10.1007/s12518-024-00580-9","DOIUrl":null,"url":null,"abstract":"<div><p>The saturated soil hydraulic conductivity (K<sub>sat</sub>) exhibits high spatial variability due to the various physical, chemical, and biological processes that act simultaneously with different intensities in soil formation. The use of geostatistics as a tool to study soil heterogeneity facilitates the understanding of the spatial variability of K<sub>sat</sub>. This study aimed to simulate the spatial variability of K<sub>sat</sub> and evaluate its uncertainties using sequential Gaussian simulation (SSG) in a tropical watershed located in southern Brazil. Soil sampling was conducted in an experimental watershed-scale grid with a sample spacing of 300 m, and K<sub>sat</sub> was analyzed. Descriptive statistics were applied to assess the behavior of K<sub>sat</sub> spatial variability, followed by geostatistical analysis, specifically SSG. Variogram parameters were defined, and SSG was used to generate 100 equiprobable random fields. The results showed that K<sub>sat</sub> in the Santa Rita watershed (SRW) is heterogeneous, and uncertainties among the hundred fields ranged from 58.70 to 81.10 mm h-1 for the 5th and 95th percentiles, respectively, possibly influenced by soil type, land use, density, and texture. The criteria for validating SSG simulation were met and successfully described the spatial continuity of K<sub>sat</sub> in the SRW. Thus, SSG proved to be an effective tool for understanding the magnitude and structure of K<sub>sat</sub> spatial variability at the watershed scale, contributing to effective soil and water management in the SRW.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":"16 3","pages":"719 - 730"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential Gaussian simulation for mapping the spatial variability of saturated soil hydraulic conductivity at watershed scale\",\"authors\":\"Rodrigo César de Vasconcelos dos Santos, Tirzah Moreira Siqueira, Mauricio Fornalski Soares, Rômulo Félix Nunes, Luís Carlos Timm\",\"doi\":\"10.1007/s12518-024-00580-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The saturated soil hydraulic conductivity (K<sub>sat</sub>) exhibits high spatial variability due to the various physical, chemical, and biological processes that act simultaneously with different intensities in soil formation. The use of geostatistics as a tool to study soil heterogeneity facilitates the understanding of the spatial variability of K<sub>sat</sub>. This study aimed to simulate the spatial variability of K<sub>sat</sub> and evaluate its uncertainties using sequential Gaussian simulation (SSG) in a tropical watershed located in southern Brazil. Soil sampling was conducted in an experimental watershed-scale grid with a sample spacing of 300 m, and K<sub>sat</sub> was analyzed. Descriptive statistics were applied to assess the behavior of K<sub>sat</sub> spatial variability, followed by geostatistical analysis, specifically SSG. Variogram parameters were defined, and SSG was used to generate 100 equiprobable random fields. The results showed that K<sub>sat</sub> in the Santa Rita watershed (SRW) is heterogeneous, and uncertainties among the hundred fields ranged from 58.70 to 81.10 mm h-1 for the 5th and 95th percentiles, respectively, possibly influenced by soil type, land use, density, and texture. The criteria for validating SSG simulation were met and successfully described the spatial continuity of K<sub>sat</sub> in the SRW. Thus, SSG proved to be an effective tool for understanding the magnitude and structure of K<sub>sat</sub> spatial variability at the watershed scale, contributing to effective soil and water management in the SRW.</p></div>\",\"PeriodicalId\":46286,\"journal\":{\"name\":\"Applied Geomatics\",\"volume\":\"16 3\",\"pages\":\"719 - 730\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12518-024-00580-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-024-00580-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Sequential Gaussian simulation for mapping the spatial variability of saturated soil hydraulic conductivity at watershed scale
The saturated soil hydraulic conductivity (Ksat) exhibits high spatial variability due to the various physical, chemical, and biological processes that act simultaneously with different intensities in soil formation. The use of geostatistics as a tool to study soil heterogeneity facilitates the understanding of the spatial variability of Ksat. This study aimed to simulate the spatial variability of Ksat and evaluate its uncertainties using sequential Gaussian simulation (SSG) in a tropical watershed located in southern Brazil. Soil sampling was conducted in an experimental watershed-scale grid with a sample spacing of 300 m, and Ksat was analyzed. Descriptive statistics were applied to assess the behavior of Ksat spatial variability, followed by geostatistical analysis, specifically SSG. Variogram parameters were defined, and SSG was used to generate 100 equiprobable random fields. The results showed that Ksat in the Santa Rita watershed (SRW) is heterogeneous, and uncertainties among the hundred fields ranged from 58.70 to 81.10 mm h-1 for the 5th and 95th percentiles, respectively, possibly influenced by soil type, land use, density, and texture. The criteria for validating SSG simulation were met and successfully described the spatial continuity of Ksat in the SRW. Thus, SSG proved to be an effective tool for understanding the magnitude and structure of Ksat spatial variability at the watershed scale, contributing to effective soil and water management in the SRW.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements