复杂介质传播过程中的相干熵

IF 20.6 1区 物理与天体物理 Q1 OPTICS Advanced Photonics Pub Date : 2024-07-18 DOI:10.1117/1.ap.6.4.046002
Xingyuan Lu, Zhuoyi Wang, Qiwen Zhan, Yangjian Cai, Chengliang Zhao
{"title":"复杂介质传播过程中的相干熵","authors":"Xingyuan Lu, Zhuoyi Wang, Qiwen Zhan, Yangjian Cai, Chengliang Zhao","doi":"10.1117/1.ap.6.4.046002","DOIUrl":null,"url":null,"abstract":". The deformation, flicker, and drift of a light field owing to complex media such as a turbulent atmosphere have limited its practical applications. Thus, research on invariants in randomly fluctuated light fields has garnered considerable attention in recent years. Coherence is a statistical property of light, while its full and quantitative characterization is challenging. Herein, we successfully realize the orthogonal modal decomposition of partially coherent beams and introduce the application of coherence entropy as a global coherence characteristic of such randomly fluctuated light fields. It is demonstrated that coherence entropy remains consistent during propagation in a unitary system by unraveling complex channels. As representative examples, we study the robustness of coherence entropy for partially coherent beams as they propagate through deformed optical systems and turbulent media. Coherence entropy is anticipated to serve as a key metric for evaluating the propagation of partially coherent beams in complex channels. This study paves the way for a broader application scope of a customized low-coherence light field through nonideal optical systems and complex media.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coherence entropy during propagation through complex media\",\"authors\":\"Xingyuan Lu, Zhuoyi Wang, Qiwen Zhan, Yangjian Cai, Chengliang Zhao\",\"doi\":\"10.1117/1.ap.6.4.046002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The deformation, flicker, and drift of a light field owing to complex media such as a turbulent atmosphere have limited its practical applications. Thus, research on invariants in randomly fluctuated light fields has garnered considerable attention in recent years. Coherence is a statistical property of light, while its full and quantitative characterization is challenging. Herein, we successfully realize the orthogonal modal decomposition of partially coherent beams and introduce the application of coherence entropy as a global coherence characteristic of such randomly fluctuated light fields. It is demonstrated that coherence entropy remains consistent during propagation in a unitary system by unraveling complex channels. As representative examples, we study the robustness of coherence entropy for partially coherent beams as they propagate through deformed optical systems and turbulent media. Coherence entropy is anticipated to serve as a key metric for evaluating the propagation of partially coherent beams in complex channels. This study paves the way for a broader application scope of a customized low-coherence light field through nonideal optical systems and complex media.\",\"PeriodicalId\":33241,\"journal\":{\"name\":\"Advanced Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.ap.6.4.046002\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.ap.6.4.046002","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

.光场因复杂介质(如湍流大气)而产生的变形、闪烁和漂移限制了其实际应用。因此,近年来对随机波动光场不变量的研究引起了广泛关注。相干性是光的一种统计特性,而对其进行全面、定量的表征则极具挑战性。在本文中,我们成功实现了部分相干光束的正交模态分解,并介绍了相干熵作为这种随机波动光场的全局相干特性的应用。研究表明,相干熵通过解开复杂通道,在单元系统中的传播过程中保持一致。作为代表性例子,我们研究了部分相干光束在变形光学系统和湍流介质中传播时相干熵的稳健性。相干熵有望成为评估部分相干光束在复杂通道中传播的关键指标。这项研究为定制的低相干光场在非理想光学系统和复杂介质中的更广泛应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coherence entropy during propagation through complex media
. The deformation, flicker, and drift of a light field owing to complex media such as a turbulent atmosphere have limited its practical applications. Thus, research on invariants in randomly fluctuated light fields has garnered considerable attention in recent years. Coherence is a statistical property of light, while its full and quantitative characterization is challenging. Herein, we successfully realize the orthogonal modal decomposition of partially coherent beams and introduce the application of coherence entropy as a global coherence characteristic of such randomly fluctuated light fields. It is demonstrated that coherence entropy remains consistent during propagation in a unitary system by unraveling complex channels. As representative examples, we study the robustness of coherence entropy for partially coherent beams as they propagate through deformed optical systems and turbulent media. Coherence entropy is anticipated to serve as a key metric for evaluating the propagation of partially coherent beams in complex channels. This study paves the way for a broader application scope of a customized low-coherence light field through nonideal optical systems and complex media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.70
自引率
1.20%
发文量
49
审稿时长
18 weeks
期刊介绍: Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential. The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria: -New concepts in terms of fundamental research with great impact and significance -State-of-the-art technologies in terms of novel methods for important applications -Reviews of recent major advances and discoveries and state-of-the-art benchmarking. The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.
期刊最新文献
Large-scale distributed diffractive-interference hybrid photonic chiplets Coherence entropy during propagation through complex media Authentication through residual attention-based processing of tampered optical responses Controlling the hidden parity in vectorial light with metasurfaces Observing the collapse of super-Bloch oscillations in strong-driving photonic temporal lattices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1